• Title/Summary/Keyword: Pulling Strength

Search Result 55, Processing Time 0.027 seconds

Strength Properties of Boxthorn(Lycium chinense Mill) Fruit-Stem Joints (구기자 열매와 과병 접합부의 강도 특성)

  • 서정덕;허윤근;이상우
    • Journal of Biosystems Engineering
    • /
    • v.25 no.6
    • /
    • pp.511-516
    • /
    • 2000
  • The strength of the connecting joint of boxthorn(Lycium chinense Mill) fruits to tree twigs was determined experimentally at several pulling angles(0$^{\circ}$, 15$^{\circ}$, 30$^{\circ}$,45$^{\circ}$and 60$^{\circ}$) and at different harvesting seasons from August to November 1999 using an universal testing machine. The detachment force of mature fruits of boxthorn decreased as the pulling angle increased and varied with the harvesting season. The detachment force however did not gradually decreased as the harvesting season advanced due to difference of maturity of fruits from one harvesting season to another. Among three varieties of boxthron Cheongyang gugija Cheongyang native and Cheongyang #2, the maximum detachment force was 1.24 N at the pulling angle of zero degree. The highest detachment forve(1.29 N) of mature fruits of boxthorn appeared at the harvesting season of August, 1999.

  • PDF

A study of electromyographic signals during isometric hand pushing and pulling in a free posture

  • Chung, Min-Keun;Lee, Kwan-Suk
    • Journal of the Ergonomics Society of Korea
    • /
    • v.8 no.2
    • /
    • pp.3-18
    • /
    • 1989
  • Two sets of isometric pushing and pulling experiments were performed by two male and two female susbjects. One set of experiments involoved isometric hand pushing and pulling in a standing erect posture, in which the thigh and pelvic regions of the subjects were braced to achieve the greatest strength. Another set of experiments involved isometric hand pushing and pulling in a free posture, in which the subjects elected their preferred postures to attain the largest strength at each of thred handle heights (low-66cm ; mid-109cm ; and high-152cm). It was shown from isometric pushing and pulling experiments in a standing erect poture that the rectus abdominis and the erector spinae muscles were acting as an antagonistic pair with respect to the L5/S1 intervertebral joint, and that the integrated EMG and the muscle force were linearly related. However, the relationships between the integrated EMG and the muscle force during isometric pushing and pulling in a free posture were not well-correlated. It is proposed that the integrated EMG results should be carefully interpreted for tasks of pushing and pulling at various handle heights.

  • PDF

Process Optimization for Improving Resistance Welding Quality of Cylindrical Secondary Battery (원통형 이차전지의 저항용접 품질 향상을 위한 공정 최적화)

  • Chung, Ji Sun;Park, Soon Seo;Kim, Jee Ho;Kwon, Hyuck Moo;Hong, Sung Hoon;Lee, Min Koo
    • Journal of Korean Society for Quality Management
    • /
    • v.48 no.1
    • /
    • pp.69-86
    • /
    • 2020
  • Purpose: This study aims to determine the optimal conditions for the spot welding process that mechanically connects the case of a cylindrical secondary battery and the negative tab. Methods: We use 33 factorial design to derive the optimal conditions for the spot welding process. The pulling strength, the cross-sectional area of nugget, and the shock test life are selected as response variables, which can represent the resistance welding quality. The input variables are selected as the welding time, welding voltage, and pressure, which are the controllable factors in the spot welding process. Results: The main effects of welding time and welding voltage and the interaction effect of welding time and welding voltage are significant. Conclusion: The optimal conditions for the spot welding process to mechanically join the negative electrode tab of the cylindrical secondary battery and the battery case are developed. The result shows that the pulling strength is increased by 44% compared to before improvement under optimal conditions.

Analysis of Joining Strength in Electromagnetic Joining of Metals to High Toughness Polymers (금속과 고분자 재료의 접합강도 해석)

  • Son, Hui-Sik;Kim, Nam-Hwan;Lee, Jong-Su
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.9 no.3
    • /
    • pp.110-116
    • /
    • 1992
  • Electromgnetic joining of aluminum alloy tubes to high toughness polyurethane rubber cores is studied in order to estimate the joining strength and to analyze the effect of the process variables. The equation which can estimate the joining strength is proposed under considering the elastic recovery of the polyurethane core and the radial shrinkage of the core by pulling it axially. The obtained results are as follows : 1) The joining strength is mainly dependent on the magnitude of residual elastic strain of the polyurethane core. 2) The radial shrinkage (residual strain reduction) of the core during the axial pulling causes the joining strength to decrease severely. The equation for the reduced axial strength is proposed and it is found that the estimated values agree well with experimental results. 3) The magnitude of radial shrinkage could be reduced for the smaller value of ratio l/r. 4) The joining strength in metal/polymer joining increases as the friction coefficient increases. But its effect of friction coefficient is insignificant in comparison with the case of metal/metal joining.

  • PDF

The Effect of Drawing Conditions on the Tensile Strength of Optical Fiber (광섬유의 인장강도에 미치는 Drawing Condition의 영향)

  • 한택상;최상삼
    • Journal of the Korean Ceramic Society
    • /
    • v.19 no.1
    • /
    • pp.44-50
    • /
    • 1982
  • Drawing optical fibers in a graphite furnace is one of the most convenient and economical means of producing optical fiber. Since the flaw formation on optical fiber is mainly due to dust contaminations during drawing and surface corrosion by water vapor penetration through coating layer, the tensile strength of optical fiber drawn in a graphite furnace is greatly inflenced by the drawing conditions. The important factors found in this investigation were preform treatment (fire polishing), furnace interior environment (dust contamination, inert gas flows), primary coating condition (resin curing temperature, coating materials, method, thickness) and fiber pulling condition (furnace temperature, drawing speed, pulling tension). The tensile strength at optimum drawing conditions turned out to be 5 ~ 6 GPa.

  • PDF

Experimental Determination of Friction Characteristics for Advanced High Strength Steel Sheets (초고강도강판 마찰특성의 실험적 규명)

  • Kim, N.J.;Keum, Y.T.
    • Transactions of Materials Processing
    • /
    • v.22 no.4
    • /
    • pp.223-228
    • /
    • 2013
  • The friction coefficients of advanced high strength steel sheets were experimentally determined. In the friction test, the pulling and holding forces acting on the sheet for various friction conditions, such as lubricant viscosity, pulling speed, blank holding pressure, sheet surface roughness, and hardness of the sheet were measured and the friction coefficient was calculated based on Coulomb's friction law. While the friction coefficient, generally, decreases as the value of friction factor increases, the factor associated with the sheet surface roughness shows U shape behavior for the friction coefficient. Furthermore, the relationship between friction coefficient and the wear volume, which was computed for the roughness of both sheet surfaces and the friction area, is linearly proportional.

Microstructure and high temperature mechanical properties of sapphire/R-Al-O(R = Y, Gd, Er, Ho, Dy) eutectic fibers grown by micro-pulling-down method

  • Hasegawa, K.;Yoshikawa, A.;Durbin, S.D.;Epellbaum, B.M.;Fukuda, T.;Waku, Y.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.4
    • /
    • pp.432-436
    • /
    • 1999
  • Fiber growth of $Al_{2}O_{3}/R-Al-O$ (R = Y, Gd, Dy, Ho, Er) eutectic by the micro-pulling down method is described. The thermal stability and strength at elevated temperature of each materials is evaluated in relation to the microstructure.

  • PDF

MICROSTRUCTURE AND HIGH TEMPERATURE MECHANICAL PROPERTIES OF SAPPHIRE/R-Al-O (R=Y,Gd,Er,Ho,Dy) EUTECTIC FIRES GROWN BY MICRO PULLING-DOWN METHOD

  • Hasegawa, K.;Yoshikawa, A.;Durbin, S.;Epelbaum, B.;Fjkuda, T.;Waku, Y.
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1999.06a
    • /
    • pp.403-418
    • /
    • 1999
  • Fiber growth of Al2O3/R-Al-O(R=Y, Gd, Dy, Ho, Er) eutectic by the micro-pulling down methods is described. The thermal stability and strength at elevated temperature of each material is evaluated in relation to the microstructure. PACS: 81.05 Mh, 81.10 Fq, 81.30-t.

  • PDF

Investigation of the Characteristics of Lubricant in Computer Hard Disk by Using Surface Analysis Technique (표면 분석을 이용한 컴퓨터 하드디스크용 윤활제의 특성 연구)

  • 조남철;남인탁
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.5
    • /
    • pp.263-270
    • /
    • 1999
  • The characteristics of lubricant for computer hard disk was investigated by surface analysis technique. The bonding state between carbon and lubricant is analysed to indentify the origin of adhesion. It is found that the thickness of lubricant is increased as pulling-up speed becomes faster and lubricant concentration is increased. The dominant surface contaminants on carbon overcoat are identified with C-OH and CO. The bond strength between carbon and lubricant is enhanced with heat treatment.

  • PDF

Growth $Al_2$O$_3$/ZrO$_2$eutectic fibers by the micro-pulling down method and its mechanical properties (Micro-pulling down법을 이용한 $Al_2$O$_3$/ZrO$_2$eutectic fiber의 제조 및 기계적 특성)

  • ;Akira Yoshikawa;Stephen D. Durbin;;Tsuguo Fukuda;Yoshiharu Waku
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.5
    • /
    • pp.345-349
    • /
    • 2000
  • $Al_2O_3/ZrO_2$eutectic fibers were grown by micro-pulling down technique and investigated their microstructure as a function of solidification rate. $Al_2O_3/ZrO_2$eutectic fibers 0.2~2 mm in diameter and 500 mm in length have been grown with a pulling rate of 0.1~15 mm/min. The eutectic microstructures changed as a function of fulling rate from rod-shaped to cellular shape containing some thin lamellar pattern via uniform lamellar structure. Typical lamellar thickness decreased from about 380 nm to 110 nm as the pulling rate increased from 1 mm/min to 15 mm/min. The interlamellar spacing fitted with the inverse-square-root dependence on pulling rate according to $\lambda$= $1{\times}v^{-1/2}$, where $\lambda$ has the dimension in $\mu\textrm{m}$ and v is $\mu\textrm{m}$/s. Hardness value reached 13.1 GPa at 15 mm/min of pulling rate and tensile strength 900 MPa at 10 mm/min were also increased as the interlamellar spacing decreased.

  • PDF