• Title/Summary/Keyword: Pulling Force

Search Result 94, Processing Time 0.026 seconds

The Separation Behaviors from Assemble Conditions for Pitch 1.25mm Level Wire to Board Connector (피치 1.25mm 급 Wire to Board Connector 에서 조립상태로부터 분리거동에 관한 연구)

  • Heo, Young-Moo;Yoon, Gil-Sang
    • Design & Manufacturing
    • /
    • v.10 no.1
    • /
    • pp.1-6
    • /
    • 2016
  • In this study, the modification structure design of insulation displacement connector developed was considered for simplification of assembly process. The modified connector consisted terminal, wafer and fitting nails. The separation behavior under locking condition for pitch 1.25mm wire to board connector was measured and the apparatus for the test was made. The maximum restraining force was measured about 4.5kgf that was bigger value than the specification limit. And the pulling force of a wire was also indicated about 2.3kgf.

Development of the Gait Assistant Mobile Robot using Ergonomics Design (인간공학적 디자인을 적용한 보행가이드 로봇의 개발)

  • Jang, J.H.;Park, T.J.;Han, C.S.;Han, J.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1166-1171
    • /
    • 2004
  • In this study, the concept of autonomous mobility is applied to a gait support mobile robot. The aim of the development of the service robot is to assist the elderly with gait rehabilitation. This study proposes an ergonomic service robot design parameter. The gait assistant path pattern is derived from analysis of the elderly gait. A lever is installed in the AMR in order to measure both the pulling force and the leading force of the elderly. The path generation of the mobile robot is developed through consideration and analysis of elderly gait patterns. The ergonomic design parameters (dimensions, action scope and working space) are determined based on moving scope of the elderly. The gait assistant mobile robot was offered the elderly guide service and internet service based on the ergonomic design parameters.

  • PDF

Ergonomic Optimization of the Handle Height and Distance for the Two-Vertical Type Handles of the 4-Wheel Cart (4륜 운반차 수직형 손잡이에서 인간공학적 최적 높이 및 간격 결정)

  • Song, Young Woong
    • Journal of the Korea Safety Management & Science
    • /
    • v.15 no.4
    • /
    • pp.123-129
    • /
    • 2013
  • Among various manual materials handling tasks, pushing/pulling was known to be one of the risk factors for the low back and shoulder musculoskeletal disorders (MSDs). This study was conducted to find out an optimal solution set of the handle height and distance for 4-wheel cart with two vertical handles. Ten male college students participated in the pushing force measurement experiment. The face-centered cube design, one of the central composite designs, was applied for the experiment, and the isometric voluntary pushing force was measured in 9 treatment conditions. The second order response surface model was predicted by using the pushing strength as a response variable, and the handle height and distance as independent factors. According to the 2nd order response model, the handle height and distance showed nonlinear relationship with the isometric pushing strength. To maximize the 2nd order response model (pushing force), the handle height and distance were optimized. The optimal handle height was 'xyphoid process height - stature', and the optimal handle distance was '$1.25{\times}shoulder$ width'. When calculated using the anthropometric data of the subjects of this study, the optimal handle height was $115.4{\pm}3.4$ cm, slightly higher than the elbow height, and the handle distance was $52.9{\pm}2.3$ cm.

A Case Study on Individually Controlled Pull-out Test for Ground Anchor (지반앵커의 인발시험을 위한 개별제어 긴장장치의 적용 사례 연구)

  • Shin, Hyeon-Cheol;Choi, Yong-Kyu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.545-552
    • /
    • 2008
  • To insure the quality and safety of ground anchors, pull-out test of anchor has to be done. In the individually controlled pull-out test system, pull-out device is used to introduce the same pull-out force to individual tendon that has a different length and a deflection. That is, that device has a separate pull-out oil jack to each tendon, thus the pull-out length of each jack is not the same, but that device introduces each tendon to the same pull-out force. In this study, the in-situ pull-out tests for the compression anchors were performed and its test results were analysed and compared to the results of center hole pull-out tests. In the case of pulling out each tendon using the individually controlled pull-out test device, the pull-out forces were distributed to a individual tendon. That device is excellent one that can solve the cause of unequal pull-out forces of each tendon appearing in the manufacture process and construction of anchors, and unequal pull-out forces due to the deferent length.

  • PDF

Comparison of the Pushing Forces between Horizontal Handle and Vertical Handle According to the Handle Height and Distance (수직형 손잡이와 수평형 손잡이의 높이와 간격에 따른 미는 힘 비교)

  • Song, Young-Woong
    • Journal of the Korea Safety Management & Science
    • /
    • v.16 no.4
    • /
    • pp.371-378
    • /
    • 2014
  • Manual materials handling tasks are the main risk factors for the work-related musculoskeletal disorders. Many assistant tools for manual materials handling are being used in various kind of industries. One of them is a 4-wheeled cart which is widely used in manufacturing factories, hospitals, etc. The major force required to control the 4-wheeled cart is pushing and pulling. There are two types of handles being used for the 4-wheeled cart : vertical type (two vertical handles), and horizontal type (one horizontal handle). This study tried to investigate the pushing forces and subjective discomforts (hand/writst, shoulder, low back, and overall) of the two handle types with different handle height and distance conditions. Twelve healthy male students (mean age = 23.4 years) participated in the experiment. The independent variables were handle angle (horizontal, vertical), handle height (low, medium, high), and handle distance (narrow, medium, wide). The full factorial design was used for the experiment and the maximum pushing forces were measured in 18 different conditions ($2{\times}3{\times}3$). Analysis of variance (ANOVA) procedure was conducted to test the effects of the independent variables on the pushing force and discomfort levels. Handle height and angle were found to be the critical design factors that affect the maximal pushing forces and subjective discomfort. In the middle height, subjects exerted higher pushing forces, and experience lower discomfort levels compared to the high, and low height. There was no statistical influence of the handle distance to the pushing forces and subjective discomfort levels. It was found out that the effects of the handle angle (horizontal and vertical) on both pushing force and subjective discomfort were statistically significant (p < 0.05). The vertical handle revealed higher pushing force and lower discomfort level than the horizontal handle. The reason for that was thought to be the different postures of the hand when grasping the handles. The horizontal handle induced pronaton of the hand and made hand posture more deviated from the neutral position.

Variation of the Muscle Activity of Erector Spinalis and Multifidus According to Their Respective Cueing When Performing Tasks, Including Tactile Stimulation in Prone Position

  • Gam, Byeong-Uk;Song, Changho
    • Physical Therapy Rehabilitation Science
    • /
    • v.11 no.1
    • /
    • pp.88-96
    • /
    • 2022
  • Objective: Purpose of this study was to compare muscle activity ratio of multifidus to erector spinalis according to various cueing including tactile stimulation to provide an effective strategy to provide verbal and tactile feedback during exercise to provoke multifidus muscle activation. Design: Cross-sectional study. Methods: Participants of this study included 28 healthy adults. Muscle activities of the multifidus and erector spinalis were measured while the participants performed tasks according to the three different methods of verbal cueing and three different tactile stimulation. Surface EMG was used to measure the muscular activity of the muscles during all the tasks. Results: Tactile stimulation to abdomen and lumbar vertebrae showed no significant difference in the muscle activity ratio (p>0.05). However, muscle activity ratio of the multifidus in relation to the erector spinalis was increased when subjects were given verbal instructions to make lumbar curvature with little force and to make lumbar curvature while pulling navel (p<0.05). However, it was decreased when they were provided with verbal instruction to make lumbar curvature with strong force (p<0.05). Conclusions: According to the results, proper verbal instruction was an effective tool to increase the muscular activity of multifidus. This study aimed to find and provide the most appropriate verbal cueing while doing exercises to activate multifidus.

Effect of Kinetic Degrees of Freedom on Hierarchical Organization of Multi-element Synergies during Force Production and Releasing Tasks

  • Kim, Kitae;Song, Junkyung;Park, Jaebum
    • Korean Journal of Applied Biomechanics
    • /
    • v.30 no.2
    • /
    • pp.131-144
    • /
    • 2020
  • Objective: The purpose of this study was to examine the effect of degrees of freedom on the multi-synergies in two hierarchies of human hand system during force production and releasing tasks. Method: In this study, the constrained movements of the aiming and releasing actions using both hands and fingers during archery-like shooting were implemented as experimental tasks. The participants produced a pulling force holding the customized frame (mimicking an archery bow, with a set of force transducers) and kept it consistently for about 5 seconds, and released fingers as quickly as possible in a self-paced manner within the next 5 seconds. An analytical method based on the uncontrolled manifold hypothesis was used to quantify the stability index (synergy index) in two hierarchies including two hands (upper hierarchy) and individual fingers (lower hierarchy). Results: The results confirmed that the positive synergy pattern showed simultaneously at the upper and lower hierarchies, and the kinetic degrees of freedom were associated with the increment of hierarchical synergy indices and the performance indices. Also, the synergy indices of both hierarchies showed significant positive correlations with the performance accuracy during the task. Conclusion: The results of this study suggest that the human control system actively uses extra degrees of freedom to stabilize task performance variables. Further increasing the degree of freedom at one level of hierarchy induces positive interactions across hierarchical control levels, which in turn positively affects the accuracy and precision of task performance.

Design of Seat Belt Pretensioner driven by Elastic Force (탄성력 기반 안전벨트 프리텐셔너 설계)

  • Yongsu Lee;Seyun Park;Hyuneun Lee;Sang-Hyun Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.1
    • /
    • pp.545-550
    • /
    • 2023
  • A pretensioner is a safety device that protects occupants by pulling the seat belt in the event of a vehicle collision. However, since the pretensioner is driven by a explosive method, it is necessary to replace not only the gas generator but also all connecting parts including the manifold after an accident. Therefore, in this paper, we propose an elastic force-based pretensioner that can be used safely and semi-permanently. After analyzing the operating mechanism of the existing pretensioner from a thermodynamic/dynamic point of view, the spring stiffness that can be deployed within an appropriate operating time was determined by converting the gas explosion energy into elastic energy. In addition, the coil spring shape that satisfies the elastic stiffness was designed in consideration of the vehicle interior installation standard. Finally, the operating performance of the pretensioner driven by elastic force was verified through fabrication.

A Study of Structural Stability of HDPE Pipe during Installation (고밀도 폴리에틸렌 파이프의 설치중 구조안정성에 대한 연구)

  • Song, Hyun-Bae;Kim, Do-Kyun;Choi, Han-Suk;Park, Kyu-Sik
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.1
    • /
    • pp.59-66
    • /
    • 2015
  • In this study, structural stability of large diameter high density polyethylene (HDPE) pipe during installation was numerically investigated in order to investigate the effect of concrete collar dimension, water depth and tension (pulling force). From the numerical simulation results, the total stress of HDPE pipe with designed concrete collar was within 2.5%, so the total weight of concrete collar for sinking of HDPE is important rather than concrete collar dimension. Furthermore, the tension area for possible installation is decreased as the air filling rate is increased. Therefore, it is important to calculate the reasonable tension range before actual installation for safe installation of HDPE pipe.

A Study on the Transmission Tower Foundation Design and Construction Method - A Focus of Cylindrical Foundation - (가공 송전 철탑기초 설계 및 시공 방법 연구 - 심형기초를 중심으로 -)

  • Jang, Suk-Han;Kim, Hee-Kwang;Lee, Kang-Hyeon;Han, Kyung-Soo;Ham, Bang-Wook;Chung, Ki-Sun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.6
    • /
    • pp.1031-1034
    • /
    • 2007
  • Electric transmission lines pass through a variety of area. Foundation supporting the conductors and tower are selected properly in accordance with external load, for example dead load, wind load, snow load, construction load etc, and topography and geology condition. Typical types of foundation are as follows: pad foundation for small load and hard soil or rock in mountainous area, pile foundation for medium or large load and soft soil in plain field area. This paper introduced cylindrical foundation design & construction for large load and mountainous area. This foundation failure mode against pulling-out show splitting failure by tensile force toward circumferential direction.