• Title/Summary/Keyword: Pulling Force

Search Result 94, Processing Time 0.023 seconds

Nutrient Requirements of Exercising Swamp Buffalo, Bubalus bubalis. II. Details of Work Energy of Cows and Its Relation to Heart Rate

  • Mahardika, I.G.;Sastradipradja, D.;Sutardi, T.;Sumadi, I.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.7
    • /
    • pp.1003-1009
    • /
    • 2000
  • Four young swamp buffalo cows of similar age ranging in body weight (W) between 280 to 380 kg and trained for doing physical exercise were used in two consecutive experiments, each using a latin square design, to determine energy expenditure for draught. The experiments consisted of field trials using 4 levels of work load, i.e. no work as control and loads amounting 450 to 500 Newton (N) continuous traction for respectively 1, 2 and 3 h daily for 14 consecutive days for experiment 1, and no work, traction loads equaling 5, 10 and 15% of W for 3 h daily for 14 days for experiment 2. Heart rate during rest and exercise was monitored using PE-3000 HR monitor. Cows were fed only king grass (Penisetum purpuroides) ad libitum and were subjected to balance trials. Body composition was estimated in vivo by the body density method and daily energy expenditure (EE) was calculated from ME minus RE. RE was calculated from the changes in body-protein and -fat measured before and immediately after the 14 d experimental period assuming an energy equivalent of 39.32 MJ/kg fat and 20.07 MJ/kg protein. $E_{exercise}$ ($EE_{work}\;-\;EE_{resting}$), which was the energy spent for doing the traction during 1, 2 and 3 h was 7.13, 15.45 and 19.90 MJ, respectively. $EE_{work}$ for the 1 h treatment group was 39.75 MJ/d equivalent to 1.30 times $EE_{resting}$. The values for the 2 and 3 h treatment groups were 1.75 and 1.86 times resting energy requirement, respectively. Absolute efficiency of work in all exercise trials of experiment 2 was around 27.28%. The increases of daily $E_{exercise}$ values were correlated to elevation of heart rate (HR) according to the equation $E_{exercise}=(0.270HR^{0.363}\;-\;1)$ MJ, while draught force related to heart rate according to the equation DF (N)=6.66 HR - 361.62. Blood glucose and triglyceride levels were gradually elevated with time during the course of exercise. Mean values of blood glucose were 91.7, 115.0 and 116.2 mg/dl for cows after 1, 2 and 3 h pulling loads at 15% W respectively as compared to 88.2 mg/dl prior to work. In the same order and treatment, mean blood triglyceride concentrations were 13.5, 13.3 and 14.8 mg/dl, and 11.5 mg/dl for control. For blood lactate, the values were 1.68, 1.63 and 1.66 mM, and 0.80 mM for control. Glucose was used as the major source of energy during the initial phase of exercise, but for prolonged work, fat will replace carbohydrate as the main substrate. Accumulation of lactate persisted for some time at the end of the exercise trials.

Experimental and Numerical Study of Berthing and Unberthing of LNG-Bunkering Vessels (실험 및 수치해석을 통한 LNG 벙커링 선박들의 이접안 안정성 평가 연구)

  • Jung, Sung-Jun;Oh, Seung-Hoon;Jung, Dong-Woo;Kim, Yun-Ho;Jung, Dong-Ho
    • Journal of Navigation and Port Research
    • /
    • v.44 no.6
    • /
    • pp.439-446
    • /
    • 2020
  • The IMO has adopted emission standards through Annex VI of the International Convention for the Prevention of Pollution from Ships (MARPOL) that strictly prohibit the use of bunker C oil for vessels. In this study, we have adopted the turret-moored Floating LNG-Bunkering Terminal (FLBT) which is designed to receive the LNG from LNGCs and transfer it to LNG-bunkering shuttles in side-by-side moored condition. Numerical analyses were carried out using the high-order boundary-element method for four vessels at various relative distances. Mean wave drift forces were compared in an operational sea state. A model test was performed in the ocean engineering basin at the Korea Research Institute of Ships & Ocean Engineering (KRISO) to verify the safety of the berthing/unberthing operation. In the model test, a jig was designed to simulate tug boats pushing or pulling the bunkering vessels, so that the friction force of the g operation was not affected. Safety depended on the environmental direction, with more stable operation possible if the heading-control function of FLBT is applied to avoid beam-sea conditions.

Properties in Strength of Raschel Netting (랏쉘그물감의 강도)

  • KIM Dai An
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.11 no.1
    • /
    • pp.39-48
    • /
    • 1978
  • 1) The decrease in strength of Raschel twines at Raschel joints is regarded to be due mainly to the frictional force between yarns and the unbalanced tensile distribution by the deformation of the joints. The rate of the decrease is about $13\%$ in lengthwise pull and 22 to $26\%$ in breadthwise pull. 2) The 3-course joint is less in deformation and stronger than the 2-course joint in all cases of pulls. 3) The variation of Raschel joint strength $T_R$ with the angle $\varphi$ between the adjacent bars is expressed as $T_R=T_{R0}-k\varphi$ where $T_{R0}$ is the strength at $\varphi=0^{\circ}$ and K is a constant. 4) The tensile strength ${\sigma}R$ and tile breaking energy $E_R$ of Raschel netting are given by $${\sigma}R=KN\;or\;${\sigma}R=T_RN$$ and $$E_R=AN$$ respectively, where N is the number of meshes at the pulling side, and K and A are constants. But the breaking energy of the netting is almost constant independent of tile variation of N. 5) The Raschel netting with some bars cut already breaks from tile joints of the bars next to the cut bars and its tensile strength, breaking energy, and breaking elongation decrease largily even if only one bar is in already cut state. 6) The tearing strength of Raschel netting is almost equal to the tensile strength of its single joint pulled by two bars. 7) The twisted joint is much more excellent in strength than the knot or the Raschel joint. The knot strength is 69 to $76\%$, and the Raschel joint strength is 71 to $74\%$ in lengthwise pull and 62 to $67\%$ in breadthwise pull, respectively, of the twisted joint strength.

  • PDF

Prediction of Optimum Capacity for Tractor Drawn Liquid Manure Tank Spreader by Computer Simulation (컴퓨터 모의시험에 의한 트랙터견인형 액상가축분뇨 살포기의 적정용량 예측)

  • 이규승
    • Journal of Animal Environmental Science
    • /
    • v.8 no.3
    • /
    • pp.135-144
    • /
    • 2002
  • A computer simulation was carried out to investigate the optimum capacity of liquid manure tank spreader which is used as a tractor attachment. Soil physical properties, such as soil moisture content, bulk density, soil hardness and soil types were measured in the 10 major rice production area for computer simulation. Mathematical model which include soil physical properties and vehicle factor was used for computer simulation. Most of the soil type of the investigated area was sandy clay loam. Soil moisture content ranged between 30 and 40% mostly. Soil bulk density was in the range of 1,500 to 1,700 kg/$m^3$. Soil hardness ranged between 1 to 18 $cm^2$. Soil hardness incorporate the effects of many soil physical properties such as soil moisture content, soil type and soil bulk density, and so the range of soil hardness is greater than any other physical properties. The capacity of liquid manure tank spreader was above 3,000 kg$_{f}$ for the most of the investigated areas, and mostly in the range of 4,000 to 6,000 $kg_f$ depending upon the slip. But for the soft soil area such as Andong and Asan, the tractor itself has mobility problem and shows no pulling force for some places. For this area, the capacity of liquid manure tank spreader ranged between 1,000 and 2,000 $kg_f$ mostly, so the capacity of liquid manure tank spreader should be designed as a small capacity trailer compared to the other area.mpared to the other area.

  • PDF