• Title/Summary/Keyword: Pull-out 실험

Search Result 166, Processing Time 0.028 seconds

Moment Resistance Performance Evaluation of Larch Glulam Joint Bonded in Glass Fiber Reinforced Plastic Rods (봉형 GFRP를 삽입접착한 낙엽송 집성재 접합부의 모멘트저항 성능 평가)

  • Lee, In-Hwan;Song, Yo-Jin;Jung, Hong-Ju;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.1
    • /
    • pp.60-67
    • /
    • 2015
  • In order to evaluate the bond performance of domestic larch glulam and the glass fiber reinforced plastic (GFRP) rod, the specimen with the GFRP rod bonded-in domestic larch glulam for pull-out test was produced. The test was carried out using various specimens with different gluing depth, width of glue-line and type of adhesive. The cantilever type rahmen structure specimen with bonded-in GFRP rods was produced based on the result of pull-out test, and its moment resistance performance was compared and examined with the moment resistance performance of slotted-in steel plate specimen. As a result of the pull-out test, the most excellent bond performance was found when the insertion depth of GFRP rods was 5 times larger than the diameter of GFRP rods. When the glue-line thickness was 1 mm, the bond performance improved by 17%~29% in comparison to the bond performance in the case of the glue-line thickness of 2 mm. Also, the bonded strength of the specimen used with poly-urethane adhesive was 2.9~4.0 times greater than the bonded strength of specimen used with resorcinol adhesive. The cantilever type rahmen structure specimen with bonded-in GFRP rods showed the moment resistance performance 0.82 times lower in comparison to the slotted-in steel plate specimen used with the drift pin, but the initial stiffness was similar as 0.93 times.

A design of hybrid type linear motor and measurement of the thrust force characteristics (Hybrid type linear motor의 설계와 추력특성시험)

  • Kim, Moon-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.10
    • /
    • pp.2147-2153
    • /
    • 2009
  • A Hybrid type Linear Pulse Motor(LPM) for low cost is designed as single side stator structure. The static and dynamic characteristics measurement systems are designed. Experimental measurement systems, which measure the static and dynamic characteristic of the LPM, are uggested for the prototype LPM. It becomes known the values of the thrust forces. Finally the microstep drive method is adopted to the drive of prototype LPM. The waveform difference is measured between the microstep method and rectangular wave. From the experimental results, it can be confirmed that the repetitive ripple of the thrust force of the prototype LPM are reduced by taking the microstep drive method.

An Experimental Study for Flexural Bonding Characteristic of GFRP Rebar (GFRP 보강근의 휨.부착특성에 관한 실험적 연구)

  • Sim, Jong-Ung;Oh, Hong-Secb;Ju, Min-Kwan;Kang, Tae-Sung;Kim, Woo-Jung;Lee, Won-Hong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.282-285
    • /
    • 2006
  • This study is to examine bond strength of beam reinforced with GFRP rebar under 4-point bending test by adopting BRITISH STANDARD. The variables were made to have bonding length of 5times$(5d_b)$, 10times$(10d_b)$ and 15times$(15d_b)$ of the nominal diameter of GFRP rebar and were done to analyze the relationship between the bonding strength and the slip. In the result of the test, pull-out failure was dominant in the $5d_b$ and $10d_b$ specimen, both patterns of the pull-out failure and concrete splitting failure appeared in the $10d_b$. On the other hand, the $15d_b$ specimen showed only concrete splitting failure at the end of bonding length. Therefore, it was prove that available bonding length of the GFRP rebar under bending condition on static test is over $15d_b$ then farther research such as fatigue bending test, development of bonding model, FEM parameter study should be performed.

  • PDF

An Experimental Study on the Engineering Properties of HPFRCC According to Kinds, Shapes and Volume Fraction of Fibers (섬유의 종류, 형상 및 치환율에 따른 HPFRCC의 공학적 특성에 관한 실험적 연구)

  • Kim, Young-Duck;Cho, Bong-Suk;Kim, Jae-Hwan;Kim, Gyu-Yong;Choi, Kyung-Yuel;Kim, Moo-Han
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.11a
    • /
    • pp.59-62
    • /
    • 2003
  • Kinds, shapes and fraction ratios of fibers have influence on properties of HPFRCC(High-Performance Fiver Reinforced Cementitious Concrete) like bending strength, strain capacity and fracture toughness. For example, hydrophilic fibers have different chemical bond strength from hydrophobic fibers, fiber shapes influence on fiber pull-out and rupture, and fiber volume fraction influence on bending strength. In this study, to estimate influences of kinds, shapes and fraction ratios of fibers, we make HFRCC with 3 kind of fiber in various volume fraction of fiber and compare cracking, bending strength and fracture toughness. As the results, bending strength of HPFRCC was increased as fiber volume fraction was increase and fiber tensile strength was increase, and strain capacity and fracture toughness of HFRCC was higher in fiber pull-out fracture than in fiber rupture fracture. And HFRCC showing pseudo strain hardening has higher fiber reinforce efficiency than others.

  • PDF

The Behavior of Anchor Connections of Cold-Formed Steel Roof Truss (경량형강 지붕트러스 앵커부의 거동)

  • Kwon, Young Bong;Kang, Sueng Won;Chung, Hyun Suk;Choi, Young Hyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.5 s.66
    • /
    • pp.519-529
    • /
    • 2003
  • In recent years, the use of cold-formed steel roof truss has been increased in the steel houses and high-rise apartments. The design of the roof truss anchor connections has been based on the experience and decision of designers. In this paper, the structural behavior of anchor connections based on experimental and decision is described. In the tests, truss members and connection members were jointed directly with self-drilling screw fasteners and the simple shaped connection member with excellent workability and structural capacity was used to connect roof truss and sub-structure. The connecting method was selected according to the construction material of sub-structure: chemical anchor for reinforced concrete structure and welding or DX-Pin for steel structures. The pull-out tests of various type anchor connection were executed to obtain the strength and the stiffness and the result have been compared with AISI(1996) and AlSC(1989) specifications, Simple formulas for the shear strength of screw connections have been propose and compared with tests.

Experimental Study on the Shear Behavior of Reinforced Hooked-Steel-Fiver Concrete Beams (훅트강섬유보강 철근콘크리트보의 전단거동에 대한 실험적 연구)

  • 심종성;이차돈;김규선;오홍섭
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.5
    • /
    • pp.179-188
    • /
    • 1995
  • SFRC overcomes brittleness of concrete and has increases strength due to the action of confmement, crack arrestmg mechan~sm and pull out resistances of steel f~bers ~ n s ~ d e the concrete. These lead also to the increased strength and ductility under the shear stress. It has been reported that the secondary remforcement effect of steel fibers IS more pronounced In shear than flexure. Addition of hooked stee!, fibers into the cementitious materials enhanced shear resistance and consequently improves structural behavior and shear strength of Reinforced Hooked-Steel-Fiber Concrete Ream(RHSFCI3) under the shear forces. Experimental observations were made on the main parameters effecting structural behavior of RHSFCB in this study. The volume fractions of fibers, shear span to depth ratios, and spaclngs of stlrrups were taken into account as the mam parameters. Some eyuatlons reported in the literatures, regardmg the predict~ons of the shear strength of RHSFCB have been evaluated stdtlst~cdlly based on the tot a1 number of 95 test results on RHSFCB faded In shear on shear flexu~al mode.

An Evaluation of Lap Splice Length of Epoxy Coated Reinforcements Using Beam-End Test (보-단부 시험을 이용한 에폭시 도막 철근의 겹침 이음길이 평가)

  • Kim, Jee-Sang;Kang, Won Hyeak
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.2
    • /
    • pp.175-182
    • /
    • 2020
  • The application of epoxy coated reinforcements is increased as a means to prevent a corrosion of reinforcements embedded in reinforced concrete structures, However, epoxy coating may reduce the bond capacity between concrete and reinforcement, which results a longer development length and lap splice length. This paper aims to the possibility of modification in lap splice length from reduction of basic development length which was confirmed using a direct pull out test. Total 36 beam specimens were tested to compare the lap splice properties of normal and epoxy coated reinforcements with beam-end test for various lap lengths and diameters of reinforcements. According to the results on failure modes, deformations, and crack widths of this experiments, the modification factor of 1.2 should be used, though the direct bond capacity is assured through direct pull out test.

Performance Evaluation of Post-installed Anchor according to Sleeve Length and Header Length (슬리브 및 헤드 길이에 따른 후설치 앵커의 인발성능평가)

  • Hur, Moo-Won;Chae, Kyoung-Hun;An, Yeong-Seung;Park, Tae-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.2
    • /
    • pp.8-15
    • /
    • 2021
  • This study presents post-installed anchors whose heads and extension sleeves are improved. The optimal lengths of the extension sleeves and headers were analytically determined by simulations. As a result of analysis using Finite element method (FEM), 9.0mm and 3.0mm were determined as the optimal lengths of sleeves and headers respectively. In pull-out tests using the improved post-installed anchors, all specimens satisfied the coefficient of variation of 15%. Comparing the pull-out strengths of existing anchors and the improved anchors, it was increased by 1.25 times for anchors embedded with a depth of 50mm, and 1.54 times for 70mm. In the cases of high-strength concrete, the strengths were increased by 1.28 and 1.55 times for 50mm and 70mm respectively. Moreover, as a result of shear tests, the improved anchors perform the greater strength of 1.38 times than the existing anchors.

Comparison of Bond-Slip Behavior and Design Criteria of High Strength Lightweight Concrete with Compressive Strength 50 MPa and Unit Weight 16 kN/m3 (압축강도 50 MPa, 단위중량 16 kN/m3 고강도 경량 콘크리트 부착-슬립 거동의 설계기준과의 비교)

  • Lee, Dong-Kyun;Lee, Do-Kyung;Oh, Jun-Hwan;Yoo, Sung-Won
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.2
    • /
    • pp.168-175
    • /
    • 2022
  • With the recent development of nanotechnology, its application in the field of construction materials is continuously increasing. However, until now, studies on the bond characteristics of concrete and rebar for applying high-strength lightweight concrete with a compressive strength of 50 MPa and a unit weight of 16 kN/m3 to structural members are lacking. Therefore, in this paper, 81 specimens of high-strength lightweight concrete with a compressive strength of 50 MPa and a unit weight of about 16 kN/m3 were fabricated and a direct pull-out tests were performed. The design code for the bond strength of ACI-408R and the experimental results are shown to be relatively similar, and as a result of the CEB-FIP and modified CMR bond behavior models through statistical analysis, it is shown to describe well on average.

Evaluation of Bond-Slip Behavior of High Strength Lightweight Concrete with Compressive Strength 120 MPa and Unit Weight 20 kN/m3 (압축강도 120 MPa, 단위중량 20 kN/m3 고강도 경량 콘크리트 부착-슬립 거동 평가)

  • Dong-Gil Gu;Jun-Hwan Oh;Sung-Won Yoo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.1
    • /
    • pp.39-47
    • /
    • 2023
  • The demand for lightweight and high-strength materials is increasing. However, studies on the bond of concrete and reinforcing bars for high-strength lightweight concrete with a compressive strength of 120 MPa and a unit weight of 20 kN/m3 to structural members are lacking. Therefore, in this paper, 108 specimens of high-strength lightweight concrete with a compressive strength of 120 MPa and a unit weight of about 20 kN/m3 were fabricated, a direct pull-out test was performed, and the bond characteristics were evaluated by comparing the test results with design code. Compared to the decrease in unit weight, the solid bubble shows relatively little reduction in compressive strength and modulus of elasticity. It was f ound to have larger slip and parameter values than concrete with low compressive strength and unit weight.