• 제목/요약/키워드: Pugh-Matrix

검색결과 15건 처리시간 0.016초

식스-시그마를 이용한 군 독신자 숙소용 모듈러 건축 시스템 개발 (Development of a Modular Building System for the BOQ Using Six-sigma)

  • 조봉호;이재승;차희성
    • 한국건설관리학회논문집
    • /
    • 제11권6호
    • /
    • pp.89-99
    • /
    • 2010
  • 군 내무생활관, 독신자 숙소 등은 동일한 평면이 반복되면서 대량으로 건설되는 대표적인 공공건축물이다. 이들 건축물들은 향후 군 구조개편시 부대의 이동, 재편에 따라 건축물의 해체 및 재사용 등이 요구되는 경우도 있다. 이러한 이유로 2005년 이래 군 건축물에 대해 철골조 기반의 공업화 건축공법인 모듈러 공법의 도입이 이루어져 왔다. 군 건축물에 모듈러 공법을 적용함에 있어 가장 중요한 요소는 표준화를 통한 공사비 절감, 건축물의 해체 및 재사용의 용이성 등이나 기존의 모듈러 군시설들은 이러한 요구를 만족시키지 못하였다. 본 연구는 향후 많은 수요가 예측되며 표준화된 모델을 적용하기 용이한 군독신자 숙소를 대상으로 식스-시그마 방법론을 이용한 모듈러 건축 시스템을 제안한다. 식스-시그마방법론을 적용하면 개발 단계에서 고객 요구사항을 주요 설계요소인 CTQ에 반영할 수 있고 이를 기반으로 설계 컨셉의 도출이 가능하다. 분석 결과 공사비 절감은 면적당 골조 중량, 재사용 용이성은 공장제작 비율의 지표로 나타낼 수 있음을 확인하였다. 본 연구에서 제안된 BOQ시스템은 기존의 모듈러 시스템에 비해 공장제작비율은 약 80% 향상되고, 면적당 골조의 중량은 기존 모듈러 시스템에 비해 62% 절감되어 충분한 경쟁력을 가지고 있는 것으로 평가되었다.

터보엔진의 저소음 흡기 RCV 시스템 개발 (A Development of an Intake RCV System for the Low Noise Turbo Engine)

  • 이종규;김재헌;강상규;강구태
    • 한국소음진동공학회논문집
    • /
    • 제20권8호
    • /
    • pp.734-741
    • /
    • 2010
  • In this paper, an intake RCV system for low noise turbo engine was developed through optimization process of a geometric path of compressor housing and an open rate of recirculation valve. At first, the critical customer requirement from voice of customer was defined and quality function deployment of an intake RCV system was executed. And then, the renovative concept design using pugh matrix method was selected as final concept for satisfaction of requirement. Simultaneously, system analysis was carried by function diagram and fishbone diagram. Next, control factors and levels for the optimal design were performed. And, the optimal design of an intake RCV system was studied using design of experiment. Conclusively, we achieved not only cancellation tip-out noise at the driving condition but also improvement of NVH commodity through optimization process of an intake RCV system, which is optimal configuration of compressor housing and recirculation valve.

개념 설계 평가를 위한 제품 품질지수 (Product Quality Index for Concept Design Evaluation)

  • 정진하;박영원
    • 한국생산제조학회지
    • /
    • 제19권4호
    • /
    • pp.521-528
    • /
    • 2010
  • A product system will be improved continually until requirements are satisfied. It is true that considering alternative designs to improve product system is hard work; it is also true that selecting an adequate design idea that represents the needs of stakeholders concerned and meets effectiveness factors properly is not an easy work, either. In the process of driv-ing an idea and designing, which is called Design Phase, there are lots of existing tools for testing the driven idea in DFSS. But, those kinds of tools do not offer the function that helps to select the technically better design idea among alternative design ideas that have the same evaluation level. Moreover it is inappropriate to select adequate alternative design ideas by just verifying only the evaluation table in pugh matrix, since satisfied deviation val-ues are low when there is a too competitive mass product system in a market. Also, for the IT product with short life cycle, faster and more effective testing tool is needed. Therefore, the 'roduct quality index' is suggested in order to select an appropriate candidate design concept for system development that meets requirements by using 'deality concept' pro-vided by TRIZ. According to the result of this research, it is possible to select technically better idea fast and effectively; it is confirmed by applying the approach to the case of LCD BLU (Back Light Unit).

카본 세라믹 복합재 디스크의 벤트 구조 최적화를 통한 냉각성능 향상에 관한 연구 (A Study on Improvement of Cooling Performance through Vent Structure Optimization of Carbon Ceramic Composite Disc)

  • 심재훈;신웅희;이중희;전갑배;김병철;곽정후;임동원;현은재;전태형;이재만
    • 자동차안전학회지
    • /
    • 제11권1호
    • /
    • pp.23-29
    • /
    • 2019
  • Recently, use of composite materials has been increasing for body structures and chassis parts in the car industry because of weight reduction effect and excellent mechanical thermal characteristics. However, application of composite materials in brake system is very difficult because it is hard to obtain enough brake performance due to low heat storage capacity of the composite materials. In this paper, we will present new carbon ceramic composite disc with high flow characteristic. To obtain this characteristic, new vent structures were designed by using ARIZ method and substance-field model analysis. The flow effect of these vent structures on the brake performance was verified by pugh matrix and cooling test. The test results show improvement of cooling performance up to $30^{\circ}C$. Finally, These results will improve brake the reliability of the brake performance for the high performance vehicles and electric vehicles.

Machinability investigation and sustainability assessment in FDHT with coated ceramic tool

  • Panda, Asutosh;Das, Sudhansu Ranjan;Dhupal, Debabrata
    • Steel and Composite Structures
    • /
    • 제34권5호
    • /
    • pp.681-698
    • /
    • 2020
  • The paper addresses contribution to the modeling and optimization of major machinability parameters (cutting force, surface roughness, and tool wear) in finish dry hard turning (FDHT) for machinability evaluation of hardened AISI grade die steel D3 with PVD-TiN coated (Al2O3-TiCN) mixed ceramic tool insert. The turning trials are performed based on Taguchi's L18 orthogonal array design of experiments for the development of regression model as well as adequate model prediction by considering tool approach angle, nose radius, cutting speed, feed rate, and depth of cut as major machining parameters. The models or correlations are developed by employing multiple regression analysis (MRA). In addition, statistical technique (response surface methodology) followed by computational approaches (genetic algorithm and particle swarm optimization) have been employed for multiple response optimization. Thereafter, the effectiveness of proposed three (RSM, GA, PSO) optimization techniques are evaluated by confirmation test and subsequently the best optimization results have been used for estimation of energy consumption which includes savings of carbon footprint towards green machining and for tool life estimation followed by cost analysis to justify the economic feasibility of PVD-TiN coated Al2O3+TiCN mixed ceramic tool in FDHT operation. Finally, estimation of energy savings, economic analysis, and sustainability assessment are performed by employing carbon footprint analysis, Gilbert approach, and Pugh matrix, respectively. Novelty aspects, the present work: (i) contributes to practical industrial application of finish hard turning for the shaft and die makers to select the optimum cutting conditions in a range of hardness of 45-60 HRC, (ii) demonstrates the replacement of expensive, time-consuming conventional cylindrical grinding process and proposes the alternative of costlier CBN tool by utilizing ceramic tool in hard turning processes considering technological, economical and ecological aspects, which are helpful and efficient from industrial point of view, (iii) provides environment friendliness, cleaner production for machining of hardened steels, (iv) helps to improve the desirable machinability characteristics, and (v) serves as a knowledge for the development of a common language for sustainable manufacturing in both research field and industrial practice.