• Title/Summary/Keyword: Public technology

Search Result 6,635, Processing Time 0.036 seconds

Impact of Shortly Acquired IPO Firms on ICT Industry Concentration (ICT 산업분야 신생기업의 IPO 이후 인수합병과 산업 집중도에 관한 연구)

  • Chang, YoungBong;Kwon, YoungOk
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.3
    • /
    • pp.51-69
    • /
    • 2020
  • Now, it is a stylized fact that a small number of technology firms such as Apple, Alphabet, Microsoft, Amazon, Facebook and a few others have become larger and dominant players in an industry. Coupled with the rise of these leading firms, we have also observed that a large number of young firms have become an acquisition target in their early IPO stages. This indeed results in a sharp decline in the number of new entries in public exchanges although a series of policy reforms have been promulgated to foster competition through an increase in new entries. Given the observed industry trend in recent decades, a number of studies have reported increased concentration in most developed countries. However, it is less understood as to what caused an increase in industry concentration. In this paper, we uncover the mechanisms by which industries have become concentrated over the last decades by tracing the changes in industry concentration associated with a firm's status change in its early IPO stages. To this end, we put emphasis on the case in which firms are acquired shortly after they went public. Especially, with the transition to digital-based economies, it is imperative for incumbent firms to adapt and keep pace with new ICT and related intelligent systems. For instance, after the acquisition of a young firm equipped with AI-based solutions, an incumbent firm may better respond to a change in customer taste and preference by integrating acquired AI solutions and analytics skills into multiple business processes. Accordingly, it is not unusual for young ICT firms become an attractive acquisition target. To examine the role of M&As involved with young firms in reshaping the level of industry concentration, we identify a firm's status in early post-IPO stages over the sample periods spanning from 1990 to 2016 as follows: i) being delisted, ii) being standalone firms and iii) being acquired. According to our analysis, firms that have conducted IPO since 2000s have been acquired by incumbent firms at a relatively quicker time than those that did IPO in previous generations. We also show a greater acquisition rate for IPO firms in the ICT sector compared with their counterparts in other sectors. Our results based on multinomial logit models suggest that a large number of IPO firms have been acquired in their early post-IPO lives despite their financial soundness. Specifically, we show that IPO firms are likely to be acquired rather than be delisted due to financial distress in early IPO stages when they are more profitable, more mature or less leveraged. For those IPO firms with venture capital backup have also become an acquisition target more frequently. As a larger number of firms are acquired shortly after their IPO, our results show increased concentration. While providing limited evidence on the impact of large incumbent firms in explaining the change in industry concentration, our results show that the large firms' effect on industry concentration are pronounced in the ICT sector. This result possibly captures the current trend that a few tech giants such as Alphabet, Apple and Facebook continue to increase their market share. In addition, compared with the acquisitions of non-ICT firms, the concentration impact of IPO firms in early stages becomes larger when ICT firms are acquired as a target. Our study makes new contributions. To our best knowledge, this is one of a few studies that link a firm's post-IPO status to associated changes in industry concentration. Although some studies have addressed concentration issues, their primary focus was on market power or proprietary software. Contrast to earlier studies, we are able to uncover the mechanism by which industries have become concentrated by placing emphasis on M&As involving young IPO firms. Interestingly, the concentration impact of IPO firm acquisitions are magnified when a large incumbent firms are involved as an acquirer. This leads us to infer the underlying reasons as to why industries have become more concentrated with a favor of large firms in recent decades. Overall, our study sheds new light on the literature by providing a plausible explanation as to why industries have become concentrated.

Understanding User Motivations and Behavioral Process in Creating Video UGC: Focus on Theory of Implementation Intentions (Video UGC 제작 동기와 행위 과정에 관한 이해: 구현의도이론 (Theory of Implementation Intentions)의 적용을 중심으로)

  • Kim, Hyung-Jin;Song, Se-Min;Lee, Ho-Geun
    • Asia pacific journal of information systems
    • /
    • v.19 no.4
    • /
    • pp.125-148
    • /
    • 2009
  • UGC(User Generated Contents) is emerging as the center of e-business in the web 2.0 era. The trend reflects changing roles of users in production and consumption of contents on websites and helps us to understand new strategies of websites such as web portals and social network websites. Nowadays, we consume contents created by other non-professional users for both utilitarian (e.g., knowledge) and hedonic values (e.g., fun). Also, contents produced by ourselves (e.g., photo, video) are posted on websites so that our friends, family, and even the public can consume those contents. This means that non-professionals, who used to be passive audience in the past, are now creating contents and share their UGCs with others in the Web. Accessible media, tools, and applications have also reduced difficulty and complexity in the process of creating contents. Realizing that users create plenty of materials which are very interesting to other people, media companies (i.e., web portals and social networking websites) are adjusting their strategies and business models accordingly. Increased demand of UGC may lead to website visits which are the source of benefits from advertising. Therefore, they put more efforts into making their websites open platforms where UGCs can be created and shared among users without technical and methodological difficulties. Many websites have increasingly adopted new technologies such as RSS and openAPI. Some have even changed the structure of web pages so that UGC can be seen several times to more visitors. This mainstream of UGCs on websites indicates that acquiring more UGCs and supporting participating users have become important things to media companies. Although those companies need to understand why general users have shown increasing interest in creating and posting contents and what is important to them in the process of productions, few research results exist in this area to address these issues. Also, behavioral process in creating video UGCs has not been explored enough for the public to fully understand it. With a solid theoretical background (i.e., theory of implementation intentions), parts of our proposed research model mirror the process of user behaviors in creating video contents, which consist of intention to upload, intention to edit, edit, and upload. In addition, in order to explain how those behavioral intentions are developed, we investigated influences of antecedents from three motivational perspectives (i.e., intrinsic, editing software-oriented, and website's network effect-oriented). First, from the intrinsic motivation perspective, we studied the roles of self-expression, enjoyment, and social attention in forming intention to edit with preferred editing software or in forming intention to upload video contents to preferred websites. Second, we explored the roles of editing software for non-professionals to edit video contents, in terms of how it makes production process easier and how it is useful in the process. Finally, from the website characteristic-oriented perspective, we investigated the role of a website's network externality as an antecedent of users' intention to upload to preferred websites. The rationale is that posting UGCs on websites are basically social-oriented behaviors; thus, users prefer a website with the high level of network externality for contents uploading. This study adopted a longitudinal research design; we emailed recipients twice with different questionnaires. Guided by invitation email including a link to web survey page, respondents answered most of questions except edit and upload at the first survey. They were asked to provide information about UGC editing software they mainly used and preferred website to upload edited contents, and then asked to answer related questions. For example, before answering questions regarding network externality, they individually had to declare the name of the website to which they would be willing to upload. At the end of the first survey, we asked if they agreed to participate in the corresponding survey in a month. During twenty days, 333 complete responses were gathered in the first survey. One month later, we emailed those recipients to ask for participation in the second survey. 185 of the 333 recipients (about 56 percentages) answered in the second survey. Personalized questionnaires were provided for them to remind the names of editing software and website that they reported in the first survey. They answered the degree of editing with the software and the degree of uploading video contents to the website for the past one month. To all recipients of the two surveys, exchange tickets for books (about 5,000~10,000 Korean Won) were provided according to the frequency of participations. PLS analysis shows that user behaviors in creating video contents are well explained by the theory of implementation intentions. In fact, intention to upload significantly influences intention to edit in the process of accomplishing the goal behavior, upload. These relationships show the behavioral process that has been unclear in users' creating video contents for uploading and also highlight important roles of editing in the process. Regarding the intrinsic motivations, the results illustrated that users are likely to edit their own video contents in order to express their own intrinsic traits such as thoughts and feelings. Also, their intention to upload contents in preferred website is formed because they want to attract much attention from others through contents reflecting themselves. This result well corresponds to the roles of the website characteristic, namely, network externality. Based on the PLS results, the network effect of a website has significant influence on users' intention to upload to the preferred website. This indicates that users with social attention motivations are likely to upload their video UGCs to a website whose network size is big enough to realize their motivations easily. Finally, regarding editing software characteristic-oriented motivations, making exclusively-provided editing software more user-friendly (i.e., easy of use, usefulness) plays an important role in leading to users' intention to edit. Our research contributes to both academic scholars and professionals. For researchers, our results show that the theory of implementation intentions is well applied to the video UGC context and very useful to explain the relationship between implementation intentions and goal behaviors. With the theory, this study theoretically and empirically confirmed that editing is a different and important behavior from uploading behavior, and we tested the behavioral process of ordinary users in creating video UGCs, focusing on significant motivational factors in each step. In addition, parts of our research model are also rooted in the solid theoretical background such as the technology acceptance model and the theory of network externality to explain the effects of UGC-related motivations. For practitioners, our results suggest that media companies need to restructure their websites so that users' needs for social interaction through UGC (e.g., self-expression, social attention) are well met. Also, we emphasize strategic importance of the network size of websites in leading non-professionals to upload video contents to the websites. Those websites need to find a way to utilize the network effects for acquiring more UGCs. Finally, we suggest that some ways to improve editing software be considered as a way to increase edit behavior which is a very important process leading to UGC uploading.

Usefulness Evaluation of Artifacts by Bone Cement of Percutaneous Vertebroplasty Performed Patients and CT Correction Method in Spine SPECT/CT Examinations (척추 뼈 SPECT/CT검사에서 경피적 척추성형술 시행 환자의 골 시멘트로 인한 인공물과 CT보정방법의 유용성 평가)

  • Kim, Ji-Hyeon;Park, Hoon-Hee;Lee, Juyoung;Nam-Kung, Sik;Son, Hyeon-Soo;Park, Sang-Ryoon
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.1
    • /
    • pp.49-61
    • /
    • 2014
  • Purpose: With the aging of the population, the attack rate of osteoporotic vertebral compression fracture is in the increasing trend, and percutaneous vertebroplasty (PVP) is the most commonly performed standardized treatment. Although there is a research report of the excellence of usefulness of the SPECT/CT examination in terns of the exact diagnosis before and after the procedure, the bone cement material used in the procedure influences the image quality by forming an artifact in the CT image. Therefore, the objective of the research lies on evaluating the effect the bone cement gives to a SPECT/CT image. Materials and Methods: The images were acquired by inserting a model cement to each cylinder, after setting the background (3.6 kBq/mL), hot cylinder (29.6 kBq/mL) and cold cylinder (water) to the NEMA-1994 phantom. It was reconstructed with Astonish (Iterative: 4 Subset: 16), and non attenuation correction (NAC), attenuation correction (AC+SC-) and attenuation and scatter correction (AC+SC+) were used for the CT correction method. The mean count by each correction method and the count change ratio by the existence of the cement material were compared and the contrast recovery coefficient (CRC) was obtained. Additionally, the bone/soft tissue ratio (B/S ratio) was obtained after measuring the mean count of the 4 places including the soft tissue(spine erector muscle) after dividing the vertebral body into fracture region, normal region and cement by selecting the 20 patients those have performed PVP from the 107 patients diagnosed of compression fracture. Results: The mean count by the existence of a cement material showed the rate of increase of 12.4%, 6.5%, 1.5% at the hot cylinder of the phantom by NAC, AC+SC- and AC+SC+ when cement existed, 75.2%, 85.4%, 102.9% at the cold cylinder, 13.6%, 18.2%, 9.1% at the background, 33.1%, 41.4%, 63.5% at the fracture region of the clinical image, 53.1%, 61.6%, 67.7% at the normal region and 10.0%, 4.7%, 3.6% at the soft tissue. Meanwhile, a relative count reduction could be verified at the cement adjacent part at the inside of the cylinder, and the phantom image on the lesion and the count increase ratio of the clinical image showed a contrary phase. CRC implying the contrast ratio and B/S ratio was improved in the order of NAC, AC+SC-, AC+SC+, and was constant without a big change in the cold cylinder of the phantom. AC+SC- for the quantitative count, and AC+SC+ for the contrast ratio was analyzed to be the highest. Conclusion: It is considered to be useful in a clinical diagnosis if the application of AC+SC+ that improves the contrast ratio is combined, as it increases the noise count of the soft tissue and the scatter region as well along with the effect of the bone cement in contrast to the fact that the use of AC+SC- in the spine SPECT/CT examination of a PVP performed patient drastically increases the image count and enables a high density of image of the lesion(fracture).

  • PDF

Intelligent Brand Positioning Visualization System Based on Web Search Traffic Information : Focusing on Tablet PC (웹검색 트래픽 정보를 활용한 지능형 브랜드 포지셔닝 시스템 : 태블릿 PC 사례를 중심으로)

  • Jun, Seung-Pyo;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.3
    • /
    • pp.93-111
    • /
    • 2013
  • As Internet and information technology (IT) continues to develop and evolve, the issue of big data has emerged at the foreground of scholarly and industrial attention. Big data is generally defined as data that exceed the range that can be collected, stored, managed and analyzed by existing conventional information systems and it also refers to the new technologies designed to effectively extract values from such data. With the widespread dissemination of IT systems, continual efforts have been made in various fields of industry such as R&D, manufacturing, and finance to collect and analyze immense quantities of data in order to extract meaningful information and to use this information to solve various problems. Since IT has converged with various industries in many aspects, digital data are now being generated at a remarkably accelerating rate while developments in state-of-the-art technology have led to continual enhancements in system performance. The types of big data that are currently receiving the most attention include information available within companies, such as information on consumer characteristics, information on purchase records, logistics information and log information indicating the usage of products and services by consumers, as well as information accumulated outside companies, such as information on the web search traffic of online users, social network information, and patent information. Among these various types of big data, web searches performed by online users constitute one of the most effective and important sources of information for marketing purposes because consumers search for information on the internet in order to make efficient and rational choices. Recently, Google has provided public access to its information on the web search traffic of online users through a service named Google Trends. Research that uses this web search traffic information to analyze the information search behavior of online users is now receiving much attention in academia and in fields of industry. Studies using web search traffic information can be broadly classified into two fields. The first field consists of empirical demonstrations that show how web search information can be used to forecast social phenomena, the purchasing power of consumers, the outcomes of political elections, etc. The other field focuses on using web search traffic information to observe consumer behavior, identifying the attributes of a product that consumers regard as important or tracking changes on consumers' expectations, for example, but relatively less research has been completed in this field. In particular, to the extent of our knowledge, hardly any studies related to brands have yet attempted to use web search traffic information to analyze the factors that influence consumers' purchasing activities. This study aims to demonstrate that consumers' web search traffic information can be used to derive the relations among brands and the relations between an individual brand and product attributes. When consumers input their search words on the web, they may use a single keyword for the search, but they also often input multiple keywords to seek related information (this is referred to as simultaneous searching). A consumer performs a simultaneous search either to simultaneously compare two product brands to obtain information on their similarities and differences, or to acquire more in-depth information about a specific attribute in a specific brand. Web search traffic information shows that the quantity of simultaneous searches using certain keywords increases when the relation is closer in the consumer's mind and it will be possible to derive the relations between each of the keywords by collecting this relational data and subjecting it to network analysis. Accordingly, this study proposes a method of analyzing how brands are positioned by consumers and what relationships exist between product attributes and an individual brand, using simultaneous search traffic information. It also presents case studies demonstrating the actual application of this method, with a focus on tablets, belonging to innovative product groups.

Analysis of promising countries for export using parametric and non-parametric methods based on ERGM: Focusing on the case of information communication and home appliance industries (ERGM 기반의 모수적 및 비모수적 방법을 활용한 수출 유망국가 분석: 정보통신 및 가전 산업 사례를 중심으로)

  • Jun, Seung-pyo;Seo, Jinny;Yoo, Jae-Young
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.175-196
    • /
    • 2022
  • Information and communication and home appliance industries, which were one of South Korea's main industries, are gradually losing their export share as their export competitiveness is weakening. This study objectively analyzed export competitiveness and suggested export-promising countries in order to help South Korea's information communication and home appliance industries improve exports. In this study, network properties, centrality, and structural hole analysis were performed during network analysis to evaluate export competitiveness. In order to select promising export countries, we proposed a new variable that can take into account the characteristics of an already established International Trade Network (ITN), that is, the Global Value Chain (GVC), in addition to the existing economic factors. The conditional log-odds for individual links derived from the Exponential Random Graph Model (ERGM) in the analysis of the cross-border trade network were assumed as a proxy variable that can indicate the export potential. In consideration of the possibility of ERGM linkage, a parametric approach and a non-parametric approach were used to recommend export-promising countries, respectively. In the parametric method, a regression analysis model was developed to predict the export value of the information and communication and home appliance industries in South Korea by additionally considering the link-specific characteristics of the network derived from the ERGM to the existing economic factors. Also, in the non-parametric approach, an abnormality detection algorithm based on the clustering method was used, and a promising export country was proposed as a method of finding outliers that deviate from two peers. According to the research results, the structural characteristic of the export network of the industry was a network with high transferability. Also, according to the centrality analysis result, South Korea's influence on exports was weak compared to its size, and the structural hole analysis result showed that export efficiency was weak. According to the model for recommending promising exporting countries proposed by this study, in parametric analysis, Iran, Ireland, North Macedonia, Angola, and Pakistan were promising exporting countries, and in nonparametric analysis, Qatar, Luxembourg, Ireland, North Macedonia and Pakistan were analyzed as promising exporting countries. There were differences in some countries in the two models. The results of this study revealed that the export competitiveness of South Korea's information and communication and home appliance industries in GVC was not high compared to the size of exports, and thus showed that exports could be further reduced. In addition, this study is meaningful in that it proposed a method to find promising export countries by considering GVC networks with other countries as a way to increase export competitiveness. This study showed that, from a policy point of view, the international trade network of the information communication and home appliance industries has an important mutual relationship, and although transferability is high, it may not be easily expanded to a three-party relationship. In addition, it was confirmed that South Korea's export competitiveness or status was lower than the export size ranking. This paper suggested that in order to improve the low out-degree centrality, it is necessary to increase exports to Italy or Poland, which had significantly higher in-degrees. In addition, we argued that in order to improve the centrality of out-closeness, it is necessary to increase exports to countries with particularly high in-closeness. In particular, it was analyzed that Morocco, UAE, Argentina, Russia, and Canada should pay attention as export countries. This study also provided practical implications for companies expecting to expand exports. The results of this study argue that companies expecting export expansion need to pay attention to countries with a relatively high potential for export expansion compared to the existing export volume by country. In particular, for companies that export daily necessities, countries that should pay attention to the population are presented, and for companies that export high-end or durable products, countries with high GDP, or purchasing power, relatively low exports are presented. Since the process and results of this study can be easily extended and applied to other industries, it is also expected to develop services that utilize the results of this study in the public sector.

Decision-making process and satisfaction of pregnant women for delivery method (임산부의 분만방법 결정과정과 만족도)

  • Jun, Hae-Ri;Park, Jung-Han;Park, Soon-Woo;Huh, Chang-Kyu;Hwang, Soon-Gu
    • Journal of Preventive Medicine and Public Health
    • /
    • v.31 no.4 s.63
    • /
    • pp.751-769
    • /
    • 1998
  • This study was conducted to assess the attitude of pregnant women toward delivery method, understanding of the reason for determining her own delivery method, participation in decision-making process and satisfaction with delivery method after labor. Study subjects were 693 pregnant women who had visited obstetric clinic for prenatal care in the last month of pregnancy in one general hospital and one obstetrics-gynecology specialty hospital in Taegu city from February 1 to March 31 in 1998. A questionnaire was administered before and after labor and a telephone interview was done one month after labor. Proportion of women who had health education and/or counselling about delivery method during prenatal care was 24.0% and this proportion was higher for women who had previous c-section(35.5%) than others. Women thought vaginal delivery is better than c-section for both maternal and baby's health regardless of previous delivery method. About 90% of primipara and multiparous women who had previous vaginal delivery wanted vaginal delivery for the index birth, while 85.6% of multiparous women who had previous c-section wanted repeat c-section. Reasons for choosing c-section in pregnant women who preferred vaginal delivery before labor were recommendation of doctors(81.9%), recommendation of husband (0.8%), agreement between doctor and pregnant woman(4.7%), and mother's demand (12.6%). Reasons for choosing vaginal delivery were mother's demand(30.6%) and no indication for c-section(67.2%). Reasons for choosing c-section in pregnant women who preferred c-section before labor were recommendation of doctors(76.2%), mother's demand(20.0%), recommendation of husband(1.3%), and agreement between doctor and pregnant woman(2.5%). Of the pregnant women who had c-section, by doctor's recommendation, the proportion of women who had heard detailed explanation about reason for c-section by doctor was 55.1%. Mother's statement about the reason for c-section was consistent with the medical record in 75.9% . However, over 5% points disparities were shown between mother's statement and medical record in cases of the repeat c-section and mother's demand. In primipara and multiparous women who had previous vaginal delivery, the delivery method for index birth had statistically significant association with the preference of delivery method before labor(p<0.05). All of the women who had previous c-section had delivered the index baby by c-section. Among mothers who had delivered the index baby vaginally, 84.9% of them were satisfied with their delivery method immediately after labor and 85.1% at 1 month after labor. However, mothers who had c-section stated that they are satisfied with c-section in 44.6% immediately after labor and 42.0% at 1 month after labor. Preferred delivery method for the next birth had statistically significant association with delivery method for the index birth both immediately after labor and in 1 month after labor. The proportion of mothers who prefer vaginal delivery for the next birth increased with the degree of satisfaction with the vaginal delivery for the index birth but the proportion of mothers who prefer c-section for the next birth was high and they did not change significantly with the degree of satisfaction with the c-section for the index birth. These results suggest that the current high technology-based, physician-centered prenatal and partritional cares need to be reoriented to the basic preventive and promotive technology-based, and mother-fetus-centered care. It is also suggested that active involvement of pregnant woman in decision-making process for the delivery method will increase the rate of vaginal birth after c-section and decrease c-section rate and improve the degree of maternal satisfaction after delivery.

  • PDF

The Effectiveness of Fiscal Policies for R&D Investment (R&D 투자 촉진을 위한 재정지원정책의 효과분석)

  • Song, Jong-Guk;Kim, Hyuk-Joon
    • Journal of Technology Innovation
    • /
    • v.17 no.1
    • /
    • pp.1-48
    • /
    • 2009
  • Recently we have found some symptoms that R&D fiscal incentives might not work well what it has intended through the analysis of current statistics of firm's R&D data. Firstly, we found that the growth rate of R&D investment in private sector during the recent decade has been slowdown. The average of growth rate (real value) of R&D investment is 7.1% from 1998 to 2005, while it was 13.9% from 1980 to 1997. Secondly, the relative share of R&D investment of SME has been decreased to 21%('05) from 29%('01), even though the tax credit for SME has been more beneficial than large size firm, Thirdly, The R&D expenditure of large size firms (besides 3 leading firms) has not been increased since late of 1990s. We need to find some evidence whether fiscal incentives are effective in increasing firm's R&D investment. To analyse econometric model we use firm level unbalanced panel data for 4 years (from 2002 to 2005) derived from MOST database compiled from the annual survey, "Report on the Survey of Research and Development in Science and Technology". Also we use fixed effect model (Hausman test results accept fixed effect model with 1% of significant level) and estimate the model for all firms, large firms and SME respectively. We have following results from the analysis of econometric model. For large firm: i ) R&D investment responds elastically (1.20) to sales volume. ii) government R&D subsidy induces R&D investment (0.03) not so effectively. iii) Tax price elasticity is almost unity (-0.99). iv) For large firm tax incentive is more effective than R&D subsidy For SME: i ) Sales volume increase R&D investment of SME (0.043) not so effectively. ii ) government R&D subsidy is crowding out R&D investment of SME not seriously (-0.0079) iii) Tax price elasticity is very inelastic (-0.054) To compare with other studies, Koga(2003) has a similar result of tax price elasticity for Japanese firm (-1.0036), Hall((l992) has a unit tax price elasticity, Bloom et al. (2002) has $-0.354{\sim}-0.124$ in the short run. From the results of our analysis we recommend that government R&D subsidy has to focus on such an areas like basic research and public sector (defense, energy, health etc.) not overlapped private R&D sector. For SME government has to focus on establishing R&D infrastructure. To promote tax incentive policy, we need to strengthen the tax incentive scheme for large size firm's R&D investment. We recommend tax credit for large size film be extended to total volume of R&D investment.

  • PDF

Analysis and Improvement Strategies for Korea's Cyber Security Systems Regulations and Policies

  • Park, Dong-Kyun;Cho, Sung-Je;Soung, Jea-Hyen
    • Korean Security Journal
    • /
    • no.18
    • /
    • pp.169-190
    • /
    • 2009
  • Today, the rapid advance of scientific technologies has brought about fundamental changes to the types and levels of terrorism while the war against the world more than one thousand small and big terrorists and crime organizations has already begun. A method highly likely to be employed by terrorist groups that are using 21st Century state of the art technology is cyber terrorism. In many instances, things that you could only imagine in reality could be made possible in the cyber space. An easy example would be to randomly alter a letter in the blood type of a terrorism subject in the health care data system, which could inflict harm to subjects and impact the overturning of the opponent's system or regime. The CIH Virus Crisis which occurred on April 26, 1999 had significant implications in various aspects. A virus program made of just a few lines by Taiwanese college students without any specific objective ended up spreading widely throughout the Internet, causing damage to 30,000 PCs in Korea and over 2 billion won in monetary damages in repairs and data recovery. Despite of such risks of cyber terrorism, a great number of Korean sites are employing loose security measures. In fact, there are many cases where a company with millions of subscribers has very slackened security systems. A nationwide preparation for cyber terrorism is called for. In this context, this research will analyze the current status of Korea's cyber security systems and its laws from a policy perspective, and move on to propose improvement strategies. This research suggests the following solutions. First, the National Cyber Security Management Act should be passed to have its effectiveness as the national cyber security management regulation. With the Act's establishment, a more efficient and proactive response to cyber security management will be made possible within a nationwide cyber security framework, and define its relationship with other related laws. The newly passed National Cyber Security Management Act will eliminate inefficiencies that are caused by functional redundancies dispersed across individual sectors in current legislation. Second, to ensure efficient nationwide cyber security management, national cyber security standards and models should be proposed; while at the same time a national cyber security management organizational structure should be established to implement national cyber security policies at each government-agencies and social-components. The National Cyber Security Center must serve as the comprehensive collection, analysis and processing point for national cyber crisis related information, oversee each government agency, and build collaborative relations with the private sector. Also, national and comprehensive response system in which both the private and public sectors participate should be set up, for advance detection and prevention of cyber crisis risks and for a consolidated and timely response using national resources in times of crisis.

  • PDF

Machine learning-based corporate default risk prediction model verification and policy recommendation: Focusing on improvement through stacking ensemble model (머신러닝 기반 기업부도위험 예측모델 검증 및 정책적 제언: 스태킹 앙상블 모델을 통한 개선을 중심으로)

  • Eom, Haneul;Kim, Jaeseong;Choi, Sangok
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.105-129
    • /
    • 2020
  • This study uses corporate data from 2012 to 2018 when K-IFRS was applied in earnest to predict default risks. The data used in the analysis totaled 10,545 rows, consisting of 160 columns including 38 in the statement of financial position, 26 in the statement of comprehensive income, 11 in the statement of cash flows, and 76 in the index of financial ratios. Unlike most previous prior studies used the default event as the basis for learning about default risk, this study calculated default risk using the market capitalization and stock price volatility of each company based on the Merton model. Through this, it was able to solve the problem of data imbalance due to the scarcity of default events, which had been pointed out as the limitation of the existing methodology, and the problem of reflecting the difference in default risk that exists within ordinary companies. Because learning was conducted only by using corporate information available to unlisted companies, default risks of unlisted companies without stock price information can be appropriately derived. Through this, it can provide stable default risk assessment services to unlisted companies that are difficult to determine proper default risk with traditional credit rating models such as small and medium-sized companies and startups. Although there has been an active study of predicting corporate default risks using machine learning recently, model bias issues exist because most studies are making predictions based on a single model. Stable and reliable valuation methodology is required for the calculation of default risk, given that the entity's default risk information is very widely utilized in the market and the sensitivity to the difference in default risk is high. Also, Strict standards are also required for methods of calculation. The credit rating method stipulated by the Financial Services Commission in the Financial Investment Regulations calls for the preparation of evaluation methods, including verification of the adequacy of evaluation methods, in consideration of past statistical data and experiences on credit ratings and changes in future market conditions. This study allowed the reduction of individual models' bias by utilizing stacking ensemble techniques that synthesize various machine learning models. This allows us to capture complex nonlinear relationships between default risk and various corporate information and maximize the advantages of machine learning-based default risk prediction models that take less time to calculate. To calculate forecasts by sub model to be used as input data for the Stacking Ensemble model, training data were divided into seven pieces, and sub-models were trained in a divided set to produce forecasts. To compare the predictive power of the Stacking Ensemble model, Random Forest, MLP, and CNN models were trained with full training data, then the predictive power of each model was verified on the test set. The analysis showed that the Stacking Ensemble model exceeded the predictive power of the Random Forest model, which had the best performance on a single model. Next, to check for statistically significant differences between the Stacking Ensemble model and the forecasts for each individual model, the Pair between the Stacking Ensemble model and each individual model was constructed. Because the results of the Shapiro-wilk normality test also showed that all Pair did not follow normality, Using the nonparametric method wilcoxon rank sum test, we checked whether the two model forecasts that make up the Pair showed statistically significant differences. The analysis showed that the forecasts of the Staging Ensemble model showed statistically significant differences from those of the MLP model and CNN model. In addition, this study can provide a methodology that allows existing credit rating agencies to apply machine learning-based bankruptcy risk prediction methodologies, given that traditional credit rating models can also be reflected as sub-models to calculate the final default probability. Also, the Stacking Ensemble techniques proposed in this study can help design to meet the requirements of the Financial Investment Business Regulations through the combination of various sub-models. We hope that this research will be used as a resource to increase practical use by overcoming and improving the limitations of existing machine learning-based models.

Analysis of HBeAg and HBV DNA Detection in Hepatitis B Patients Treated with Antiviral Therapy (항 바이러스 치료중인 B형 간염환자에서 HBeAg 및 HBV DNA 검출에 관한 분석)

  • Cheon, Jun Hong;Chae, Hong Ju;Park, Mi Sun;Lim, Soo Yeon;Yoo, Seon Hee;Lee, Sun Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.23 no.1
    • /
    • pp.35-39
    • /
    • 2019
  • Purpose Hepatitis B virus (hepatitis B virus, HBV) infection is a worldwide major public health problem and it is known as a major cause of chronic hepatitis, liver cirrhosis and liver cancer. And serologic tests of hepatitis B virus is essential for diagnosing and treating these diseases. In addition, with the development of molecular diagnostics, the detection of HBV DNA in serum diagnoses HBV infection and is recognized as an important indicator for the antiviral agent treatment response assessment. We performed HBeAg assay using Immunoradiometric assay (IRMA) and Chemiluminescent Microparticle Immunoassay (CMIA) in hepatitis B patients treated with antiviral agents. The detection rate of HBV DNA in serum was measured and compared by RT-PCR (Real Time - Polymerase Chain Reaction) method Materials and Methods HBeAg serum examination and HBV DNA quantification test were conducted on 270 hepatitis B patients undergoing anti-virus treatment after diagnosis of hepatitis B virus infection. Two serologic tests (IRMA, CMIA) with different detection principles were applied for the HBeAg serum test. Serum HBV DNA was quantitatively measured by real-time polymerase chain reaction (RT-PCR) using the Abbott m2000 System. Results The detection rate of HBeAg was 24.1% (65/270) for IRMA and 82.2% (222/270) for CMIA. Detection rate of serum HBV DNA by real-time RT-PCR is 29.3% (79/270). The measured amount of serum HBV DNA concentration is $4.8{\times}10^7{\pm}1.9{\times}10^8IU/mL$($mean{\pm}SD$). The minimum value is 16IU/mL, the maximum value is $1.0{\times}10^9IU/mL$, and the reference value for quantitative detection limit is 15IU/mL. The detection rates and concentrations of HBV DNA by group according to the results of HBeAg serological (IRMA, CMIA)tests were as follows. 1) Group I (IRMA negative, CMIA positive, N = 169), HBV DNA detection rate of 17.7% (30/169), $6.8{\times}10^5{\pm}1.9{\times}10^6IU/mL$ 2) Group II (IRMA positive, CMIA positive, N = 53), HBV DNA detection rate 62.3% (33/53), $1.1{\times}10^8{\pm}2.8{\times}10^8IU/mL$ 3) Group III (IRMA negative, CMIA negative, N = 36), HBV DNA detection rate 36.1% (13/36), $3.0{\times}10^5{\pm}1.1{\times}10^6IU/mL$ 4) Group IV(IRMA positive, CMIA negative, N = 12), HBV DNA detection rate 25% (3/12), $1.3{\times}10^3{\pm}1.1{\times}10^3IU/mL$ Conclusion HBeAg detection rate according to the serological test showed a large difference. This difference is considered for a number of reasons such as characteristics of the Ab used for assay kit and epitope, HBV of genotype. Detection rate and the concentration of the group-specific HBV DNA classified serologic results confirmed the high detection rate and the concentration in Group II (IRMA-positive, CMIA positive, N = 53).