Journal of the Korea Institute of Information and Communication Engineering
/
v.25
no.10
/
pp.1375-1380
/
2021
Korea's security response to application service app is still insufficient due to the initial opening of the public safety network. Therefore, preemptive security measures are essential. In this study, we proposed to establish a 'public safety network app security system' to prevent potential vulnerabilities to the app store that distributes app in public safety network and android operating system that operate app on dedicated terminal devices. In order for an application service app to be listed on the public safety network mobile app store, a dataset of malicious and normal app is first established to extract characteristics and select the most effective AI model to perform static and dynamic analysis. According to the analysis results, 'Safety App Certificate' is certified for non-malicious app to secure reliability for listed apps. Ultimately, it minimizes the security blind spots of public safety network app. In addition, the safety of the network can be secured by supporting public safety application service of certified apps.
Eun Jee Chang;Sanggu Kang;Yeri Jeong;Sungchan Kang;Su Jin Kang
Journal of Preventive Medicine and Public Health
/
v.56
no.1
/
pp.67-76
/
2023
Objectives: Previous studies have reported that people with disabilities are more likely to be impoverished and affected by excessive medical costs than people without disabilities. Public transfer income (PTI) reduces financial strain in low-income households. This study examined the impact of PTI on catastrophic health expenditures (CHE), focusing on low-income households and households with Medical Aid beneficiaries that contained people with disabilities. Methods: We constructed a panel dataset by extracting data on registered households with disabilities from the Korea Welfare Panel Study 2012-2019. We then used a generalized estimating equation model to estimate the impacts of PTI on CHE. A subgroup analysis was carried out to assess the moderating effects of family income levels and health insurance types. Results: As PTI increased, the odds ratio (OR) of CHE in households that contained people with disabilities decreased significantly (OR, 0.92; 95% confidence interval [CI], 0.89 to 0.94; p<0.001). In particular, PTI effectively reduced the likelihood of CHE for low-income households (OR, 0.85; 95% CI, 0.81 to 0.89; p<0.001) and those who received medical benefits (OR, 0.78; 95% CI, 0.68 to 0.89; p<0.001). Conclusions: This study highlights the positive effect of PTI on decreasing CHE. Household income and the health insurance type were significant effect modifiers, but economic barriers seemed to persist among low-income households with non-Medical Aid beneficiaries. Federal policies or programs should consider increasing the total amount of PTI targeting low-income households with disabilities that are not covered by the Medical Aid program.
User satisfaction has always been important in the success of software, regardless of whether it is closed and proprietary or open source software (OSS). OSS users are geographically distributed and include technical as well as novice users. However, it is generally believed that if OSS was more usable, its popularity would increase tremendously. Hence, users and their requirements need to be addressed in the priorities of an OSS environment. Online public forums are a major medium of communication for the OSS community. The research model of this work studies the relationship between user requirements in open source software and online public forums. To conduct this research, we used a dataset consisting of 100 open source software projects in different categories. The results show that online forums play a significant role in identifying user requirements and addressing their requests in open source software.
International Journal of Advanced Culture Technology
/
v.11
no.3
/
pp.297-301
/
2023
The study identified the various causes of odor problems, the discomfort they cause, and the importance of the public health and environmental issues associated with them. To solve the odor problem, you must identify the cause and perform an accurate analysis. Therefore, we proposed a CNN-Transformer hybrid model (CTHM) that combines CNN and Transformer and evaluated its performance. It was evaluated using a dataset consisting of 120,000 odor samples, and experimental results showed that CTHM achieved an accuracy of 93.000%, a precision of 92.553%, a recall of 94.167%, an F1 score of 92.880%, and an RMSE of 0.276. Our results showed that CTHM was suitable for odor analysis and had excellent prediction performance. Utilization of this model is expected to help address odor problems and alleviate public health and environmental concerns.
Proceedings of the Korean Society of Computer Information Conference
/
2020.07a
/
pp.301-302
/
2020
The number of abandoned dogs were increasing every year in South Korea. However, many dogs are euthanized in the shelter because of the lack of budget. This project predicts euthanasia of abandoned dogs using machine learning algorithm. It collects data from the public data portal where Korea government provides a public dataset as a form of open API. This project uses recent three-year data 2017 to 2019 and 263371 cases were founded. This project implements random forest and logistic regression models. This project attained an average 72% of prediction accuracy.
Haghighat, S.;Akbari, M.E.;Ghaffari, S.;Yavari, P.
Asian Pacific Journal of Cancer Prevention
/
v.13
no.11
/
pp.5525-5528
/
2012
Introduction: Breast cancer is the most common cancer in women. Improvements of early diagnosis modalities have led to longer survival rates. This study aimed to determine the 5, 10 and 15 year mortality rates of breast cancer patients compared to the normal female population. Materials and Methods: The follow up data of a cohort of 615 breast cancer patients referred to Iranian Breast Cancer Research Center (BCRC) from 1986 to 1996 was considered as reference breast cancer dataset. The dataset was divided into 5 year age groups and the 5, 10 and 15 year probability of death for each group was estimated. The annual mortality rate of Iranian women was obtained from the Death Registry system. Standardized mortality ratios (SMRs) of breast cancer patients were calculated using the ratio of the mortality rate in breast cancer patients over the general female population. Results: The mean age of breast cancer patients at diagnosis time was 45.9 (${\pm}10.5$) years ranging from 24-74. A total of 73, 32 and 2 deaths were recorded at 5, 10 and 15 years, respectively, after diagnosis. The SMRs for breast cancer patients at 5, 10 and 15 year intervals after diagnosis were 6.74 (95% CI, 5.5-8.2), 6.55 (95%CI, 5-8.1) and 1.26 (95%CI, 0.65-2.9), respectively. Conclusion: Results showed that the observed mortality rate of breast cancer patients after 15 years from diagnosis was very similar to expected rates in general female population. This finding would be useful for clinicians and health policy makers to adopt a beneficial strategy to improve breast cancer survival. Further follow-up time with larger sample size and a pooled analysis of survival rates of different centres may shed more light on mortality patterns of breast cancer.
Background: The purpose of this study was to propose a method for developing a measure of hospital-wide all-cause risk-standardized readmissions using administrative claims data in Korea and to discuss further considerations in the refinement and implementation of the readmission measure. Methods: By adapting the methodology of the United States Center for Medicare & Medicaid Services for creating a 30-day readmission measure, we developed a 6-step approach for generating a comparable measure using Korean datasets. Using the 2010 Korean National Health Insurance (NHI) claims data as the development dataset, hierarchical regression models were fitted to calculate a hospital-wide all-cause risk-standardized readmission measure. Six regression models were fitted to calculate the readmission rates of six clinical condition groups, respectively and a single, weighted, overall readmission rate was calculated from the readmission rates of these subgroups. Lastly, the case mix differences among hospitals were risk-adjusted using patient-level comorbidity variables. The model was validated using the 2009 NHI claims data as the validation dataset. Results: The unadjusted, hospital-wide all-cause readmission rate was 13.37%, and the adjusted risk-standardized rate was 10.90%, varying by hospital type. The highest risk-standardized readmission rate was in hospitals (11.43%), followed by general hospitals (9.40%) and tertiary hospitals (7.04%). Conclusion: The newly developed, hospital-wide all-cause readmission measure can be used in quality and performance evaluations of hospitals in Korea. Needed are further methodological refinements of the readmission measures and also strategies to implement the measure as a hospital performance indicator.
Dongkwon Kim;Seunghee Lee;Bummo Koo;Sumin Yang;Youngho Kim
Journal of Biomedical Engineering Research
/
v.44
no.6
/
pp.384-391
/
2023
Among the elderly, fatal injuries and deaths are significantly attributed to falls. Therefore, a pre-impact fall detection system is necessary for injury prevention. In this study, a robust threshold-based algorithm was proposed for pre-impact fall detection, reducing false positives in highly dynamic daily-living movements. The algorithm was validated using public datasets (KFall and FARSEEING) that include the real-world elderly fall. A 6-axis IMU sensor (Movella Dot, Movella, Netherlands) was attached to S2 of 20 healthy adults (aged 22.0±1.9years, height 164.9±5.9cm, weight 61.4±17.1kg) to measure 14 activities of daily living and 11 fall movements at a sampling frequency of 60Hz. A 5Hz low-pass filter was applied to the IMU data to remove high-frequency noise. Sum vector magnitude of acceleration and angular velocity, roll, pitch, and vertical velocity were extracted as feature vector. The proposed algorithm showed an accuracy 98.3%, a sensitivity 100%, a specificity 97.0%, and an average lead-time 311±99ms with our experimental data. When evaluated using the KFall public dataset, an accuracy in adult data improved to 99.5% compared to recent studies, and for the elderly data, a specificity of 100% was achieved. When evaluated using FARSEEING real-world elderly fall data without separate segmentation, it showed a sensitivity of 71.4% (5/7).
This paper proposes a lightweight deep learning network for detecting an image splicing forgery. The research on image forgery detection using CNN, a deep learning network, and research on detecting and localizing forgery in pixel units are in progress. Among them, CAT-Net, which learns the discrete cosine transform coefficients of images together with images, was released in 2022. The DCT coefficients presented by CAT-Net are combined with the JPEG artifact learning module and the backbone model as pre-learning, and the weights are fixed. The dataset used for pre-training is not included in the public dataset, and the backbone model has a relatively large number of network parameters, which causes overfitting in a small dataset, hindering generalization performance. In this paper, this learning module is designed to learn the characterization depending on the DCT domain in real-time during network training without pre-training. The DCT RRU-Net proposed in this paper is a network that combines RRU-Net which detects forgery by learning only images and JPEG artifact learning module. It is confirmed that the network parameters are less than those of CAT-Net, the detection performance of forgery is better than that of RRU-Net, and the generalization performance for various datasets improves through the network architecture and training method of DCT RRU-Net.
Amal Al-Shahrani;Amjad Alghamdi;Areej Alqurashi;Raghad Alzahrani;Nuha imam
International Journal of Computer Science & Network Security
/
v.24
no.5
/
pp.1-10
/
2024
Individuals with visual impairments face numerous challenges in their daily lives, with navigating streets and public spaces being particularly daunting. The inability to identify safe crossing locations and assess the feasibility of crossing significantly restricts their mobility and independence. Globally, an estimated 285 million people suffer from visual impairment, with 39 million categorized as blind and 246 million as visually impaired, according to the World Health Organization. In Saudi Arabia alone, there are approximately 159 thousand blind individuals, as per unofficial statistics. The profound impact of visual impairments on daily activities underscores the urgent need for solutions to improve mobility and enhance safety. This study aims to address this pressing issue by leveraging computer vision and deep learning techniques to enhance object detection capabilities. Two models were trained to detect objects: one focused on street crossing obstacles, and the other aimed to search for objects. The first model was trained on a dataset comprising 5283 images of road obstacles and traffic signals, annotated to create a labeled dataset. Subsequently, it was trained using the YOLOv8 and YOLOv5 models, with YOLOv5 achieving a satisfactory accuracy of 84%. The second model was trained on the COCO dataset using YOLOv5, yielding an impressive accuracy of 94%. By improving object detection capabilities through advanced technology, this research seeks to empower individuals with visual impairments, enhancing their mobility, independence, and overall quality of life.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.