• Title/Summary/Keyword: Public dataset

Search Result 254, Processing Time 0.026 seconds

The Factors Affecting the Population Outflow from Busan to the Seoul Metropolitan Area (지역별 수도권으로의 인구유출에 영향을 미치는 요인 연구: 부산시 사례를 중심으로)

  • LIM, Jaebin;Jeong, Kiseong
    • Land and Housing Review
    • /
    • v.12 no.2
    • /
    • pp.47-59
    • /
    • 2021
  • This study aims to review the trends of the population outflows in the metropolitan area of Busan and to investigate the factors that affect population out-migration to the Seoul metropolitan area. The following variables are considered for analysis: traditional population movement variables and quality of life variables, such as population, society, employment, housing, culture, safety, medical care, greenery, education, and childcare. The 'domestic population movement data', provided by the MDIS of the National Statistical Office, was used for this research. Out of the total of 57 million population movement data in the period 2012 - 2017, population outmigration from Busan to the Seoul metropolitan area was extracted. Independent variables were drawn from public data sources in accordance with the temporal and spatial settings of the study. The multiple linear regression model was specified based on the dataset, and the fit of the model was measured by the p-value, and the values of Adjusted R2, Durbin-Watson analysis, and F-statistics. The results of the analysis showed that the variables that have a significant effect on population movement from Busan to the Seoul metropolitan area were as follows: 'single-person households', 'the elderly population', 'the total birth rate', 'the number of companies', 'the number of employees', 'the housing sales price index', 'cultural facilities', and 'the number of students per teacher'. More positive (+) influences of the population out-movement were observed in areas with higher numbers of single-person households, lowers proportions of the elderly, lower numbers of businesses, higher numbers of employees, higher numbers of housing sales, lower numbers of cultural facilities, and lower numbers of students. The findings suggest that policies should enhance the environments such as quality jobs, culture, and welfare that can retain young people within Busan. Improvements in the quality of life and job creation are critical factors that can mitigate the outflows of the Busan residents to the Seoul metropolitan area.

A Study on the Records Management for the National Assembly Members (국회의원 기록관리 방안 연구)

  • Kim, Jang-hwan
    • The Korean Journal of Archival Studies
    • /
    • no.55
    • /
    • pp.39-71
    • /
    • 2018
  • The purpose of this study is to examine the reality of the records management of the National Assembly members and suggest a desirable alternative. Until the Public Records Management Act was enacted in 1999, the level of the records management in the National Assembly was not beyond that of the document management in both the administration and the legislature. Rather, the National Assembly has maintained a records management tradition that systematically manages the minutes and bills since the Constitutional Assembly. After the Act was legislated in 2000, the National Assembly Records Management Regulation was enacted and enforced, and the Archives was established in the form of a subsidiary organ of the Secretariat of the National Assembly, even though its establishment is not obligatory. In addition, for the first time, an archivist was assigned as a records and archives researcher in Korea, whose role is to respond quickly in accordance with the records schedule of the National Assembly, making its service faster than that of the administration. However, the power of the records management of the National Assembly Archives at the time of the Secretariat of the National Assembly was greatly reduced, so the revision of the regulations in accordance with the revised Act in 2007 was not completed until 2011. In the case of the National Assembly, the direct influence of the executive branch was insignificant. As the National Assembly had little direct influence on the administration, it had little positive influence on records management innovation under Roh Moo-Hyun Administration. Even within the National Assembly, the records management observed by its members is insignificant both in practice and in theory. As the National Assembly members are excluded from the Act, there is no legal basis to enforce a records management method upon them. In this study, we analyze the records management problem of the National Assembly members, which mainly concerns the National Assembly records management plan established in the National Archives. Moreover, this study proposes three kinds of records management methods for the National Assembly members, namely, the legislation and revision of regulations, the records management consulting of the National Assembly members, and the transfer of the dataset of administrative information systems and websites.

Overcoming taxonomic challenges in DNA barcoding for improvement of identification and preservation of clariid catfish species

  • Piangjai Chalermwong;Thitipong Panthum;Pish Wattanadilokcahtkun;Nattakan Ariyaraphong;Thanyapat Thong;Phanitada Srikampa;Worapong Singchat;Syed Farhan Ahmad;Kantika Noito;Ryan Rasoarahona;Artem Lisachov;Hina Ali;Ekaphan Kraichak;Narongrit Muangmai;Satid Chatchaiphan6;Kednapat Sriphairoj;Sittichai Hatachote;Aingorn Chaiyes;Chatchawan Jantasuriyarat;Visarut Chailertlit;Warong Suksavate;Jumaporn Sonongbua;Witsanu Srimai;Sunchai Payungporn;Kyudong Han;Agostinho Antunes;Prapansak Srisapoome;Akihiko Koga;Prateep Duengkae;Yoichi Matsuda;Uthairat Na-Nakorn;Kornsorn Srikulnath
    • Genomics & Informatics
    • /
    • v.21 no.3
    • /
    • pp.39.1-39.15
    • /
    • 2023
  • DNA barcoding without assessing reliability and validity causes taxonomic errors of species identification, which is responsible for disruptions of their conservation and aquaculture industry. Although DNA barcoding facilitates molecular identification and phylogenetic analysis of species, its availability in clariid catfish lineage remains uncertain. In this study, DNA barcoding was developed and validated for clariid catfish. 2,970 barcode sequences from mitochondrial cytochrome c oxidase I (COI) and cytochrome b (Cytb) genes and D-loop sequences were analyzed for 37 clariid catfish species. The highest intraspecific nearest neighbor distances were 85.47%, 98.03%, and 89.10% for COI, Cytb, and D-loop sequences, respectively. This suggests that the Cytb gene is the most appropriate for identifying clariid catfish and can serve as a standard region for DNA barcoding. A positive barcoding gap between interspecific and intraspecific sequence divergence was observed in the Cytb dataset but not in the COI and D-loop datasets. Intraspecific variation was typically less than 4.4%, whereas interspecific variation was generally more than 66.9%. However, a species complex was detected in walking catfish and significant intraspecific sequence divergence was observed in North African catfish. These findings suggest the need to focus on developing a DNA barcoding system for classifying clariid catfish properly and to validate its efficacy for a wider range of clariid catfish. With an enriched database of multiple sequences from a target species and its genus, species identification can be more accurate and biodiversity assessment of the species can be facilitated.

A Study on the Development Trend of Artificial Intelligence Using Text Mining Technique: Focused on Open Source Software Projects on Github (텍스트 마이닝 기법을 활용한 인공지능 기술개발 동향 분석 연구: 깃허브 상의 오픈 소스 소프트웨어 프로젝트를 대상으로)

  • Chong, JiSeon;Kim, Dongsung;Lee, Hong Joo;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.1-19
    • /
    • 2019
  • Artificial intelligence (AI) is one of the main driving forces leading the Fourth Industrial Revolution. The technologies associated with AI have already shown superior abilities that are equal to or better than people in many fields including image and speech recognition. Particularly, many efforts have been actively given to identify the current technology trends and analyze development directions of it, because AI technologies can be utilized in a wide range of fields including medical, financial, manufacturing, service, and education fields. Major platforms that can develop complex AI algorithms for learning, reasoning, and recognition have been open to the public as open source projects. As a result, technologies and services that utilize them have increased rapidly. It has been confirmed as one of the major reasons for the fast development of AI technologies. Additionally, the spread of the technology is greatly in debt to open source software, developed by major global companies, supporting natural language recognition, speech recognition, and image recognition. Therefore, this study aimed to identify the practical trend of AI technology development by analyzing OSS projects associated with AI, which have been developed by the online collaboration of many parties. This study searched and collected a list of major projects related to AI, which were generated from 2000 to July 2018 on Github. This study confirmed the development trends of major technologies in detail by applying text mining technique targeting topic information, which indicates the characteristics of the collected projects and technical fields. The results of the analysis showed that the number of software development projects by year was less than 100 projects per year until 2013. However, it increased to 229 projects in 2014 and 597 projects in 2015. Particularly, the number of open source projects related to AI increased rapidly in 2016 (2,559 OSS projects). It was confirmed that the number of projects initiated in 2017 was 14,213, which is almost four-folds of the number of total projects generated from 2009 to 2016 (3,555 projects). The number of projects initiated from Jan to Jul 2018 was 8,737. The development trend of AI-related technologies was evaluated by dividing the study period into three phases. The appearance frequency of topics indicate the technology trends of AI-related OSS projects. The results showed that the natural language processing technology has continued to be at the top in all years. It implied that OSS had been developed continuously. Until 2015, Python, C ++, and Java, programming languages, were listed as the top ten frequently appeared topics. However, after 2016, programming languages other than Python disappeared from the top ten topics. Instead of them, platforms supporting the development of AI algorithms, such as TensorFlow and Keras, are showing high appearance frequency. Additionally, reinforcement learning algorithms and convolutional neural networks, which have been used in various fields, were frequently appeared topics. The results of topic network analysis showed that the most important topics of degree centrality were similar to those of appearance frequency. The main difference was that visualization and medical imaging topics were found at the top of the list, although they were not in the top of the list from 2009 to 2012. The results indicated that OSS was developed in the medical field in order to utilize the AI technology. Moreover, although the computer vision was in the top 10 of the appearance frequency list from 2013 to 2015, they were not in the top 10 of the degree centrality. The topics at the top of the degree centrality list were similar to those at the top of the appearance frequency list. It was found that the ranks of the composite neural network and reinforcement learning were changed slightly. The trend of technology development was examined using the appearance frequency of topics and degree centrality. The results showed that machine learning revealed the highest frequency and the highest degree centrality in all years. Moreover, it is noteworthy that, although the deep learning topic showed a low frequency and a low degree centrality between 2009 and 2012, their ranks abruptly increased between 2013 and 2015. It was confirmed that in recent years both technologies had high appearance frequency and degree centrality. TensorFlow first appeared during the phase of 2013-2015, and the appearance frequency and degree centrality of it soared between 2016 and 2018 to be at the top of the lists after deep learning, python. Computer vision and reinforcement learning did not show an abrupt increase or decrease, and they had relatively low appearance frequency and degree centrality compared with the above-mentioned topics. Based on these analysis results, it is possible to identify the fields in which AI technologies are actively developed. The results of this study can be used as a baseline dataset for more empirical analysis on future technology trends that can be converged.