• Title/Summary/Keyword: Public dataset

Search Result 254, Processing Time 0.027 seconds

The Effect of Eco-Friendly Interior Designs in the Urban Hotel To Attract Potential Customers

  • Soo-Hee LEE
    • The Journal of Industrial Distribution & Business
    • /
    • v.14 no.5
    • /
    • pp.19-29
    • /
    • 2023
  • Purpose: The hospitality sector is vital to economic development, especially in metropolitan regions, where hotels are a pivotal factor in drawing in leisure and corporate visitors. Despite the potential advantages of urban hotels, there is a gap in empirical studies on the impacts of eco-friendly interior design on hotel appeal and guest behavior. Therefore, this study aims to fill out the research gap. Research design, data and methodology: This study employed a review of the literature systematically as its research design. The study's data collection technique involves exploring peer-reviewed journals through electronic databases like Scopus, and Web of Science. The present author double-checked the quality of instrument for all usable dataset. Results: Prior literature has stated a strong linkage between green interior design in urban hotels and customer behavior and hotel attractiveness. Using environmentally conscious methods, hotels can enhance the quality of their indoor atmosphere, preserve energy and water supplies, and establish a favorable public perception that appeals to environmentally aware consumers, thereby improving their overall experience and contentment. Conclusions: This study concludes that creating indoor spaces with environmental factors in mind could lead to a more enjoyable and beneficial atmosphere for hotel visitors and adopting a sustainability-oriented approach to hotel design and operations could attract potential customers.

The Effects of Corporate Social Responsibility on the Firm Performance: The Moderating Effects of Advertising Intensity and Environmental Pollution in China (사회적 책임(CSR)이 기업 성과에 미치는 영향: 중국에서 광고집중도와 환경오염도의 조절 효과를 중심으로)

  • Zhijuan Huang;Jooyoung Kwak
    • Asia-Pacific Journal of Business
    • /
    • v.14 no.1
    • /
    • pp.59-71
    • /
    • 2023
  • Purpose - The purpose of this study is to investigate the effect of corporate social responsibility (CSR) on firm performance in China, plus the moderating effects of advertising intensity and environmental pollution. Design/methodology/approach - We analyzed our dataset that consists of 188 public Chinese firms drawn from the Shanghai and Shenzhen exchanges during 2010-2020. Findings - Based on the stakeholder theory and signaling theory, we proposed the positive relationship between the CSR level and the firm performance. Further, we configured consumers and the government as major stakeholders in China, suggesting positive moderating effects of advertising intensity and environmental pollution, respectively. Research implications or originality - The results show that the CSR level increases the firm performance. The advertising intensity positively moderates the relationship between the CSR level and the firm performance, but there was no significant moderating effects of environmental pollution. The findings confirm the importance of consumers for the CSR stakeholders. While the Chinese government strongly reinforces environmental regulation, CSR itself does not seem to be the fine-aligned action prioritized for mitigating environmental pollution.

Optimized patch feature extraction using CNN for emotion recognition (감정 인식을 위해 CNN을 사용한 최적화된 패치 특징 추출)

  • Irfan Haider;Aera kim;Guee-Sang Lee;Soo-Hyung Kim
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.510-512
    • /
    • 2023
  • In order to enhance a model's capability for detecting facial expressions, this research suggests a pipeline that makes use of the GradCAM component. The patching module and the pseudo-labeling module make up the pipeline. The patching component takes the original face image and divides it into four equal parts. These parts are then each input into a 2Dconvolutional layer to produce a feature vector. Each picture segment is assigned a weight token using GradCAM in the pseudo-labeling module, and this token is then merged with the feature vector using principal component analysis. A convolutional neural network based on transfer learning technique is then utilized to extract the deep features. This technique applied on a public dataset MMI and achieved a validation accuracy of 96.06% which is showing the effectiveness of our method.

Hyperparameter optimization for Lightweight and Resource-Efficient Deep Learning Model in Human Activity Recognition using Short-range mmWave Radar (mmWave 레이더 기반 사람 행동 인식 딥러닝 모델의 경량화와 자원 효율성을 위한 하이퍼파라미터 최적화 기법)

  • Jiheon Kang
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.6
    • /
    • pp.319-325
    • /
    • 2023
  • In this study, we proposed a method for hyperparameter optimization in the building and training of a deep learning model designed to process point cloud data collected by a millimeter-wave radar system. The primary aim of this study is to facilitate the deployment of a baseline model in resource-constrained IoT devices. We evaluated a RadHAR baseline deep learning model trained on a public dataset composed of point clouds representing five distinct human activities. Additionally, we introduced a coarse-to-fine hyperparameter optimization procedure, showing substantial potential to enhance model efficiency without compromising predictive performance. Experimental results show the feasibility of significantly reducing model size without adversely impacting performance. Specifically, the optimized model demonstrated a 3.3% improvement in classification accuracy despite a 16.8% reduction in number of parameters compared th the baseline model. In conclusion, this research offers valuable insights for the development of deep learning models for resource-constrained IoT devices, underscoring the potential of hyperparameter optimization and model size reduction strategies. This work contributes to enhancing the practicality and usability of deep learning models in real-world environments, where high levels of accuracy and efficiency in data processing and classification tasks are required.

Leveraging Deep Learning and Farmland Fertility Algorithm for Automated Rice Pest Detection and Classification Model

  • Hussain. A;Balaji Srikaanth. P
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.4
    • /
    • pp.959-979
    • /
    • 2024
  • Rice pest identification is essential in modern agriculture for the health of rice crops. As global rice consumption rises, yields and quality must be maintained. Various methodologies were employed to identify pests, encompassing sensor-based technologies, deep learning, and remote sensing models. Visual inspection by professionals and farmers remains essential, but integrating technology such as satellites, IoT-based sensors, and drones enhances efficiency and accuracy. A computer vision system processes images to detect pests automatically. It gives real-time data for proactive and targeted pest management. With this motive in mind, this research provides a novel farmland fertility algorithm with a deep learning-based automated rice pest detection and classification (FFADL-ARPDC) technique. The FFADL-ARPDC approach classifies rice pests from rice plant images. Before processing, FFADL-ARPDC removes noise and enhances contrast using bilateral filtering (BF). Additionally, rice crop images are processed using the NASNetLarge deep learning architecture to extract image features. The FFA is used for hyperparameter tweaking to optimise the model performance of the NASNetLarge, which aids in enhancing classification performance. Using an Elman recurrent neural network (ERNN), the model accurately categorises 14 types of pests. The FFADL-ARPDC approach is thoroughly evaluated using a benchmark dataset available in the public repository. With an accuracy of 97.58, the FFADL-ARPDC model exceeds existing pest detection methods.

A Grey Wolf Optimized- Stacked Ensemble Approach for Nitrate Contamination Prediction in Cauvery Delta

  • Kalaivanan K;Vellingiri J
    • Economic and Environmental Geology
    • /
    • v.57 no.3
    • /
    • pp.329-342
    • /
    • 2024
  • The exponential increase in nitrate pollution of river water poses an immediate threat to public health and the environment. This contamination is primarily due to various human activities, which include the overuse of nitrogenous fertilizers in agriculture and the discharge of nitrate-rich industrial effluents into rivers. As a result, the accurate prediction and identification of contaminated areas has become a crucial and challenging task for researchers. To solve these problems, this work leads to the prediction of nitrate contamination using machine learning approaches. This paper presents a novel approach known as Grey Wolf Optimizer (GWO) based on the Stacked Ensemble approach for predicting nitrate pollution in the Cauvery Delta region of Tamilnadu, India. The proposed method is evaluated using a Cauvery River dataset from the Tamilnadu Pollution Control Board. The proposed method shows excellent performance, achieving an accuracy of 93.31%, a precision of 93%, a sensitivity of 97.53%, a specificity of 94.28%, an F1-score of 95.23%, and an ROC score of 95%. These impressive results underline the demonstration of the proposed method in accurately predicting nitrate pollution in river water and ultimately help to make informed decisions to tackle these critical environmental problems.

A dual path encoder-decoder network for placental vessel segmentation in fetoscopic surgery

  • Yunbo Rao;Tian Tan;Shaoning Zeng;Zhanglin Chen;Jihong Sun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.1
    • /
    • pp.15-29
    • /
    • 2024
  • A fetoscope is an optical endoscope, which is often applied in fetoscopic laser photocoagulation to treat twin-to-twin transfusion syndrome. In an operation, the clinician needs to observe the abnormal placental vessels through the endoscope, so as to guide the operation. However, low-quality imaging and narrow field of view of the fetoscope increase the difficulty of the operation. Introducing an accurate placental vessel segmentation of fetoscopic images can assist the fetoscopic laser photocoagulation and help identify the abnormal vessels. This study proposes a method to solve the above problems. A novel encoder-decoder network with a dual-path structure is proposed to segment the placental vessels in fetoscopic images. In particular, we introduce a channel attention mechanism and a continuous convolution structure to obtain multi-scale features with their weights. Moreover, a switching connection is inserted between the corresponding blocks of the two paths to strengthen their relationship. According to the results of a set of blood vessel segmentation experiments conducted on a public fetoscopic image dataset, our method has achieved higher scores than the current mainstream segmentation methods, raising the dice similarity coefficient, intersection over union, and pixel accuracy by 5.80%, 8.39% and 0.62%, respectively.

MixFace: Improving face verification with a focus on fine-grained conditions

  • Junuk Jung;Sungbin Son;Joochan Park;Yongjun Park;Seonhoon Lee;Heung-Seon Oh
    • ETRI Journal
    • /
    • v.46 no.4
    • /
    • pp.660-670
    • /
    • 2024
  • The performance of face recognition (FR) has reached a plateau for public benchmark datasets, such as labeled faces in the wild (LFW), celebrities in frontal-profile in the wild (CFP-FP), and the first manually collected, in-the-wild age database (AgeDB), owing to the rapid advances in convolutional neural networks (CNNs). However, the effects of faces under various fine-grained conditions on FR models have not been investigated, owing to the absence of relevant datasets. This paper analyzes their effects under different conditions and loss functions using K-FACE, a recently introduced FR dataset with fine-grained conditions. We propose a novel loss function called MixFace, which combines classification and metric losses. The superiority of MixFace in terms of effectiveness and robustness was experimentally demonstrated using various benchmark datasets.

Convolutional GRU and Attention based Fall Detection Integrating with Human Body Keypoints and DensePose

  • Yi Zheng;Cunyi Liao;Ruifeng Xiao;Qiang He
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.9
    • /
    • pp.2782-2804
    • /
    • 2024
  • The integration of artificial intelligence technology with medicine has rapidly evolved, with increasing demands for quality of life. However, falls remain a significant risk leading to severe injuries and fatalities, especially among the elderly. Therefore, the development and application of computer vision-based fall detection technologies have become increasingly important. In this paper, firstly, the keypoint detection algorithm ViTPose++ is used to obtain the coordinates of human body keypoints from the camera images. Human skeletal feature maps are generated from this keypoint coordinate information. Meanwhile, human dense feature maps are produced based on the DensePose algorithm. Then, these two types of feature maps are confused as dual-channel inputs for the model. The convolutional gated recurrent unit is introduced to extract the frame-to-frame relevance in the process of falling. To further integrate features across three dimensions (spatio-temporal-channel), a dual-channel fall detection algorithm based on video streams is proposed by combining the Convolutional Block Attention Module (CBAM) with the ConvGRU. Finally, experiments on the public UR Fall Detection Dataset demonstrate that the improved ConvGRU-CBAM achieves an F1 score of 92.86% and an AUC of 95.34%.

Study on the classification system of identification of the enemy in the military border area (군 경계지역에서 피아식별 분류 시스템 연구)

  • Junhyeong Lee;Hyun Kwon
    • Convergence Security Journal
    • /
    • v.24 no.3
    • /
    • pp.203-208
    • /
    • 2024
  • The identification and classification of victims in the county border area is one of the important issues. The personnel that can appear in the military border area are comprised of North Korean soldiers, U.S. soldiers, South Korean soldiers, and the general public, and are currently being confirmed through CCTV. They were classified into true categories and learned through transfer learning. The PyTorch machine learning library was used, and the dataset was utilized by crawling images corresponding to each item shared on Google. The experimental results show that each item is classified with an accuracy of 98.7500%. Future research will explore ways to distinguish more systematically and specifically by going beyond images and adding video or voice recognition.