• Title/Summary/Keyword: Public Key

Search Result 2,394, Processing Time 0.032 seconds

Certificate Issuing Protocol Supporting WAKE-KR (WAKE-KR을 지원하는 인증서 발행 프로토콜)

  • 이용호;이임영
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.2
    • /
    • pp.288-300
    • /
    • 2003
  • As the importance of information security gets recognized seriously, ciphers technology gets used more. Particularly, since public key ciphers are easier to control the key than symmetric key ciphers and also digital signature is easily implemented, public key ciphers are increased used. Nowadays, public key infrastructure is established and operated to use efficiently and securely the public key ciphers. In the public key infrastructure, the user registers at the certificate authority to generate the private key and public key pair and the certificate authority issues the certificate on the public key generated. Through this certificate, key establishment between users is implemented and encryption communication becomes possible. But, control function of session key established in the public key infrastructure is not provided. In this thesis, the certificate issuing protocol to support the key recovery of the session key established during the wireless authentication and key establishment is proposed.

  • PDF

A Secure Asymmetric Watermarking to the Public Key Attack (공개키 공격에 안전한 비대칭 워터마킹)

  • Li, De;Kim, Jong-Weon;Choi, Jong-Uk
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.7
    • /
    • pp.173-180
    • /
    • 2008
  • In this paper, we proposed an algorithm for an effective public key and private key generation to implement a secure asymmetric watermarking system against the public key attack. The public key and private key generation is based on the linear transformation using a special matrix and the keys are designed to be able to have high correlation value. We also proposed a counter plan of public key attack. This method uses a multiple public key generation and distribution. As the results, the correlation value between the public key and the private key is high in the watermarked image. After the public key attack. this can detect the correlation by using other public key.

  • PDF

Optical Asymmetric Cryptography Modifying the RSA Public-key Protocol

  • Jeon, Seok Hee;Gil, Sang Keun
    • Current Optics and Photonics
    • /
    • v.4 no.2
    • /
    • pp.103-114
    • /
    • 2020
  • A new optical asymmetric cryptosystem is proposed by modifying the asymmetric RSA public-key protocol required in a cryptosystem. The proposed asymmetric public-key algorithm can be optically implemented by combining a two-step quadrature phase-shifting digital holographic encryption method with the modified RSA public-key algorithm; then two pairs of public-private keys are used to encrypt and decrypt the plaintext. Public keys and ciphertexts are digital holograms that are Fourier-transform holograms, and are recorded on CCDs with 256-gray-level quantized intensities in the optical architecture. The plaintext can only be decrypted by the private keys, which are acquired by the corresponding asymmetric public-key-generation algorithm. Schematically, the proposed optical architecture has the advantage of producing a complicated, asymmetric public-key cryptosystem that can enhance security strength compared to the conventional electronic RSA public-key cryptosystem. Numerical simulations are carried out to demonstrate the validity and effectiveness of the proposed method, by evaluating decryption performance and analysis. The proposed method shows feasibility for application to an asymmetric public-key cryptosystem.

A Study on the Certification System in Electromic Commerce (전자상거래(電子商去來)의 인증체계(認證體系)에 관한 고찰(考察))

  • Ha, Kang Hun
    • Journal of Arbitration Studies
    • /
    • v.9 no.1
    • /
    • pp.367-390
    • /
    • 1999
  • The basic requirements for conducting electronic commerce include confidentiality, integrity, authentication and authorization. Cryptographic algorithms, make possible use of powerful authentication and encryption methods. Cryptographic techniques offer essential types of services for electronic commerce : authentication, non-repudiation. The oldest form of key-based cryptography is called secret-key or symmetric encryption. Public-key systems offer some advantages. The public key pair can be rapidly distributed. We don't have to send a copy of your public key to all the respondents. Fast cryptographic algorithms for generating message digests are known as one-way hash function. In order to use public-key cryptography, we need to generate a public key and a private key. We could use e-mail to send public key to all the correspondents. A better, trusted way of distributing public keys is to use a certification authority. A certification authority will accept our public key, along with some proof of identity, and serve as a repository of digital certificates. The digital certificate acts like an electronic driver's license. The Korea government is trying to set up the Public Key Infrastructure for certificate authorities. Both governments and the international business community must involve archiving keys with trusted third parties within a key management infrastructure. The archived keys would be managed, secured by governments under due process of law and strict accountability. It is important that all the nations continue efforts to develop an escrowed key in frastructure based on voluntary use and international standards and agreements.

  • PDF

Public Key Certification Technology for Electronic Commerce (전자 상거래 인증 기술)

  • 하영국;임신영;강상승;함호상;박상봉
    • The Journal of Society for e-Business Studies
    • /
    • v.4 no.2
    • /
    • pp.23-40
    • /
    • 1999
  • Nowadays, major application of public key certification technology based on PKI(Public Key Infrastructure) is electronic commerce. Public key certification technology may include various sub-technologies such as key recovery, secret sharing, certificate/key management, and directory system technology. This thesis discusses PKI-based certification authority technology for electronic commerce on the Internet.

  • PDF

Public key broadcast encryption scheme using new converting method

  • Jho, Nam-Su;Yoo, Eun-Sun;Rhee, Man-Young
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.18 no.6B
    • /
    • pp.199-206
    • /
    • 2008
  • Broadcast encryption is a cryptographical primitive which is designed for a content provider to distribute contents to only privileged qualifying users through an insecure channel. Anyone who knows public keys can distribute contents by means of public key broadcast encryption whose technique can also be applicable to many other applications. In order to design public key broadcast encryption scheme, it should devise some methods that convert a broadcast encryption scheme based on symmetric key cryptosystem to a public key broadcast encryption. Up to this point, broadcast encryption scheme on trial for converting from symmetric key setting to asymmetric public key setting has been attempted by employing the Hierarchical Identity Based Encryption (HIBE) technique. However, this converting method is not optimal because some of the properties of HIBE are not quite fitting for public key broadcast schemes. In this paper, we proposed new converting method and an efficient public key broadcast encryption scheme Pub-PI which is obtained by adapting the new converting method to the PI scheme [10]. The transmission overhead of the Pub-PI is approximately 3r, where r is the number of revoked users. The storage size of Pub-PI is O($c^2$), where c is a system parameter of PI and the computation cost is 2 pairing computations.

Certificateless Public Key Encryption Revisited: Security Model and Construction (무인증서 공개키 암호 기법의 재고: 안전성 모델 및 설계)

  • Kim, Songyi;Park, Seunghwan;Lee, Kwangsu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.6
    • /
    • pp.1109-1122
    • /
    • 2016
  • Certificateless public key cryptography is a technique that can solve the certificate management problem of a public key cryptosystem and clear the key escrow issue of ID-based cryptography using the public key in user ID. Although the studies were actively in progress, many existing schemes have been designed without taking into account the safety of the secret value with the decryption key exposure attacks. If previous secret values and decryption keys are exposed after replacing public key, a valid private key can be calculated by obtaining the partial private key corresponding to user's ID. In this paper, we propose a new security model which ensures the security against the key exposure attacks and show that several certificateless public key encryption schemes are insecure in the proposed security model. In addition, we design a certificateless public key encryption scheme to be secure in the proposed security model and prove it based on the DBDH(Decisional Bilinear Diffie-Hellman) assumption.

The Security analysis of Self-certified public key based Key agreement protocols against Active Attacks (능동적 공격자 환경에서의 자체인증 공개키에 기반한 키 분배 프로토콜의 안전성 분석)

  • Yang HyungKyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.1C
    • /
    • pp.25-34
    • /
    • 2005
  • Girault proposed a key agreement protocol based on his new idea of self-certified public key. Later Rueppel and Oorschot showed variants of the Girault scheme. All of these key agreement protocols inherit positive features of self-certified public key so that they can provide higher security and smaller communication overhead than key agreement protocols not based on self-certified public key. Even with such novel features, rigorous security analysis of these protocols has not been made clear yet. In this paper, we give rigorous security analysis of key agreement protocols based on self-certified public key. We use reduction among functions for security analysis and consider several kinds of active attacker models such as active impersonation attack, key-compromise impersonation attack, forward secrecy and known key security.

Inter-Domain Verifiable Self-certified public keys (상이한 도메인에서 검증 가능한 자체 인증 공개키)

  • 정영석;한종수;오수현;원동호
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.13 no.4
    • /
    • pp.71-84
    • /
    • 2003
  • Self-certified public keys need not be accompanied with a separate certificate to be authenticated by other users because the public keys are computed by both the authority and the user. At this point, verifiable self-certified public keys are proposed that can determine which is wrong signatures or public keys if public keys are used in signature scheme and then verification of signatures does not succeed. To verify these public keys, key generation center's public key trusted by users is required. If all users trust same key generation center, public keys can be verified simply. But among users in different domains, rusty relationship between two key generation centers must be accomplished. In this paper we propose inter-domain verifiable self-certified public keys that can be verified without certificate between users under key generation centers whose trusty relationship is accomplished. Also we present the execution of signature and key distribution between users under key generation centers use different public key parameters.

Design of a Private Key Escrow System based on the Fingerprint Identification (지문 인식 기반의 개인키 위탁 시스템의 설계)

  • Shin, Yong-Nyuo;Lee, Yong-Jun
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.4 no.2
    • /
    • pp.21-28
    • /
    • 2008
  • There are some problems on the system that uses a password comprising a digital signature to identify the secret key owner under the public key infrastructure. For example, the password can be difficult to remember or easy to be disclosure, and users should make more complex password to protect it. A number of studies have been proceeded in order to overcome these defects using the fingerprint identification technologies, but they need to change the current standard of public key infrastructure. On the suggested private key escrow system, the private key can be withdrawn only through the enrollment and identification of a fingerprint template after it is saved to a reliable third system. Therefore, this new private key escrow system can remove previous inconveniences of managingthe private key on current public key infrastructure, and it exhibited superior results in terms of the evaluation items when compared with the integrated method of the existing fingerprint identification and public key infrastructure.