• Title/Summary/Keyword: Public Big data

Search Result 709, Processing Time 0.024 seconds

Design and Implementation of a Realtime Public Transport Route Guidance System using Big Data Analysis (빅데이터 분석 기법을 이용한 실시간 대중교통 경로 안내 시스템의 설계 및 구현)

  • Lim, Jongtae;Bok, Kyoungsoo;Yoo, Jaesoo
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.2
    • /
    • pp.460-468
    • /
    • 2019
  • Recently, analysis techniques to extract new meanings using big data analysis and various services using these analysis techniques have been developed. Among them, the transport is one of the most important areas that can be utilized about big data. However, the existing traffic route guidance system can not recommend the optimal traffic route because they use only the traffic information when the user search the route. In this paper, we propose a realtime optimal traffic route guidance system using big data analysis. The proposed system considers the realtime traffic information and results of big data analysis using historical traffic data. And, the proposed system show the warning message to the user when the user need to change the traffic route.

Construction of Spatiotemporal Big Data Using Environmental Impact Assessment Information

  • Cho, Namwook;Kim, Yunjee;Lee, Moung-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.4
    • /
    • pp.637-643
    • /
    • 2020
  • In this study, the information from environmental impact statements was converted into spatial data because environmental data from development sites are collected during the environmental impact assessment (EIA) process. Spatiotemporal big data were built from environmental spatial data for each environmental medium for 2,235 development sites during 2007-2018, available from public data portals. Comparing air-quality monitoring stations, 33,863 measurement points were constructed, which is approximately 75 times more measurement points than that 452 in Air Korea's real-time measurement network. Here, spatiotemporal big data from 2,677,260 EIAs were constructed. In the future, such data might be used not only for EIAs but also for various spatial plans.

Analysis of public opinion in the 20th presidential election using YouTube data (유튜브 데이터를 활용한 20대 대선 여론분석)

  • Kang, Eunkyung;Yang, Seonuk;Kwon, Jiyoon;Yang, Sung-Byung
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.3
    • /
    • pp.161-183
    • /
    • 2022
  • Opinion polls have become a powerful means for election campaigns and one of the most important subjects in the media in that they predict the actual election results and influence people's voting behavior. However, the more active the polls, the more often they fail to properly reflect the voters' minds in measuring the effectiveness of election campaigns, such as repeatedly conducting polls on the likelihood of winning or support rather than verifying the pledges and policies of candidates. Even if the poor predictions of the election results of the polls have undermined the authority of the press, people cannot easily let go of their interest in polls because there is no clear alternative to answer the instinctive question of which candidate will ultimately win. In this regard, we attempt to retrospectively grasp public opinion on the 20th presidential election by applying the 'YouTube Analysis' function of Sometrend, which provides an environment for discovering insights through online big data. Through this study, it is confirmed that a result close to the actual public opinion (or opinion poll results) can be easily derived with simple YouTube data results, and a high-performance public opinion prediction model can be built.

Computational Analysis on Twitter Users' Attitudes towards COVID-19 Policy Intervention

  • Joohee Kim;Yoomi Kim
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.4
    • /
    • pp.358-377
    • /
    • 2023
  • During the initial period of the COVID-19 pandemic, governments around the world implemented non-pharmaceutical interventions. For these policy interventions to be effective, authorities engaged in the political discourse of legitimising their activity to generate positive public attitudes. To understand effective COVID-19 policy, this study investigates public attitudes in South Korea, the United Kingdom, and the United States and how they reflect different legitimisation of policy intervention. We adopt a big data approach to analyse public attitudes, drawing from public comments posted on Twitter during selected periods. We collect the number of tweets related to COVID-19 policy intervention and conduct a sentiment analysis using a deep learning method. Public attitudes and sentiments in the three countries show different patterns according to how policy interventions were implemented. Overall concern about policy intervention is higher in South Korea than in the other two countries. However, public sentiments in all three countries tend to improve following implementation of policy intervention. The findings suggest that governments can achieve policy effectiveness when consistent and transparent communication take place during the initial period of the pandemic. This study contributes to the existing literature by applying big data analysis to explain which policies engender positive public attitudes.

Design and Implementation of Hadoop-based Big-data processing Platform for IoT Environment (사물인터넷 환경을 위한 하둡 기반 빅데이터 처리 플랫폼 설계 및 구현)

  • Heo, Seok-Yeol;Lee, Ho-Young;Lee, Wan-Jik
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.2
    • /
    • pp.194-202
    • /
    • 2019
  • In the information society represented by the Fourth Industrial Revolution, various types of data and information that are difficult to see are produced, processed, and processed and circulated to enhance the value of existing goods. The IoT(Internet of Things) paradigm will change the appearance of individual life, industry, disaster, safety and public service fields. In order to implement the IoT paradigm, several elements of technology are required. It is necessary that these various elements are efficiently connected to constitute one system as a whole. It is also necessary to collect, provide, transmit, store and analyze IoT data for implementation of IoT platform. We designed and implemented a big data processing IoT platform for IoT service implementation. Proposed platform system is consist of IoT sensing/control device, IoT message protocol, unstructured data server and big data analysis components. For platform testing, fixed IoT devices were implemented as solar power generation modules and mobile IoT devices as modules for table tennis stroke data measurement. The transmission part uses the HTTP and the CoAP, which are based on the Internet. The data server is composed of Hadoop and the big data is analyzed using R. Through the emprical test using fixed and mobile IoT devices we confirmed that proposed IoT platform system normally process and operate big data.

Where and Why? A Novel Approach for Prioritizing Implementation Points of Public CCTVs using Urban Big Data

  • Ji Hye Park;Daehwan Kim;Keon Chul Park
    • Journal of Internet Computing and Services
    • /
    • v.24 no.5
    • /
    • pp.97-106
    • /
    • 2023
  • Citizens' demand for public CCTVs continues to rise, along with an increase in variouscrimes and social problems in cities. In line with the needs of citizens, the Seoul Metropolitan Government began installing CCTV cameras in 2010, and the number of new installations has increased by over 10% each year. As the large surveillance system represents a substantial budget item for the city, decision-making on location selection should be guided by reasonable standards. The purpose of this study is to improve the existing related models(such as public CCTV priority location analysis manuals) to establish the methodology foranalyzing priority regions ofSeoul-type public CCTVs and propose new mid- to long-term installation goals. Additionally, using the improved methodology, we determine the CCTV priority status of 25 autonomous districts across Seoul and calculate the goals. Through its results, this study suggests improvements to existing models by addressing their limitations, such as the sustainability of input data, the conversion of existing general-purpose models to urban models, and the expansion of basic local government-level models to metropolitan government levels. The results can also be applied to other metropolitan areas and are used by the Seoul Metropolitan Government in its CCTV operation policy

Impact of Community Health Care Resources on the Place of Death of Older Persons with Dementia in South Korea Using Public Administrative Big Data (공공 빅데이터를 이용한 치매 노인 사망장소의 결정요인: 지역보건의료자원의 영향)

  • Lim, Eunok;Kim, Hongsoo
    • Health Policy and Management
    • /
    • v.27 no.2
    • /
    • pp.167-176
    • /
    • 2017
  • Background: This study aimed to analyze the impact of community health care resources on the place of death of older adults with dementia compared to those with cancer in South Korea, using public administrative big data. Methods: Based on a literature review, we selected person- and community-level variables that can affect older people's decisions about where to die. Data on place-of-death and person-level attributes were obtained from the 2013 death certification micro data from Statistics Korea. Data on the population and economic and health care resources in the community where the older deceased resided were obtained from various open public administrative big data including databases on the local tax and resident population statistics, health care resources and infrastructure statistics, and long-term care (LTC) insurance statistics. Community-level data were linked to the death certificate micro data through the town (si-gun-gu) code of the residence of the deceased. Multi-level logistic regression models were used to simultaneously estimate the impacts of community as well as individual-level factors on the place of death. Results: In both the dementia (76.1%) and cancer (87.1%) decedent groups, most older people died in the hospital. Among the older deceased with dementia, hospital death was less likely to occur when the older person resided in a community with a higher supply of LTC facility beds, but hospital death was more likely to occur in communities with a higher supply of LTC hospital beds. Similarly, among the cancer group, the likelihood of a hospital death was significantly lower in communities with a higher supply of LTC facility beds, but was higher in communities with a higher supply of acute care hospital beds. As for individual-level factors, being female and having no spouse were associated with the likelihood of hospital death among older people with dementia. Conclusion: More than three in four older people with dementia die in the hospital, while home is reported to be the place of death preferred by Koreans. To decrease this gap, an increase in the supply of end-of-life (EOL) care at home and in community-based service settings is necessary. EOL care should also be incorporated as an essential part of LTC. Changes in the perception of EOL care by older people and their families are also critical in their decisions about the place of death, and should be supported by public education and other related non-medical, social approaches.

Identification of public concerns about radiation through a big data analysis of questions posted on a portal site in Korea

  • Jeong, So Yun;Kim, Jae Wook;Joo, Han Young;Kim, Young Seo;Moon, Joo Hyun
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.2046-2055
    • /
    • 2021
  • This paper analyzed the primary concerns about radiation among the Korean public with a big data analysis of questions posted at the section of "Knowledge iN" on the portal site NAVER in Korea from January 2010 to August 2020. First, we extracted questions about radiation and categorized them into the three categories with TF-IDF analysis: "Medical," "Career Counseling," and "General Interest". The "Medical" category includes questions about radiation diagnosis or treatment. The "Career Counseling" category includes questions about entering college and the prospect of finding jobs in radiation-related fields. The "General Interest" category includes questions about terminology and the basic knowledge of radiation or radioisotopes. Second, we extracted common questions for each category. Finally, we analyzed the temporal change in the numbers of questions for each category to confirm whether there is any correlation between radiation-related events and the number of questions. The analysis results demonstrate that major radiation-related events have little relevance to the number of questions except during March 2011.

Analysis of Encryption Algorithm Performance by Workload in BigData Platform (빅데이터 플랫폼 환경에서의 워크로드별 암호화 알고리즘 성능 분석)

  • Lee, Sunju;Hur, Junbeom
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.6
    • /
    • pp.1305-1317
    • /
    • 2019
  • Although encryption for data protection is essential in the big data platform environment of public institutions and corporations, much performance verification studies on encryption algorithms considering actual big data workloads have not been conducted. In this paper, we analyzed the performance change of AES, ARIA, and 3DES for each of six workloads of big data by adding data and nodes in MongoDB environment. This enables us to identify the optimal block-based cryptographic algorithm for each workload in the big data platform environment, and test the performance of MongoDB by testing various workloads in data and node configurations using the NoSQL Database Benchmark (YCSB). We propose an optimized architecture that takes into account.