• Title/Summary/Keyword: PtM catalyst

Search Result 117, Processing Time 0.023 seconds

[ De-NOx ] Characteristics for Pt/γ-Alumina/Cordierite Foam Filter of Beads Shape (Pt/γ-Alumina/Cordierite 비드형 세라믹 폼 필터의 NOx 제거 특성)

  • Park, Jung-Wook;Park, Jay-Hyun;Park, Jai-Koo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.3
    • /
    • pp.277-285
    • /
    • 2007
  • Porous cordierite beads, of which the average pore size was $130{\mu}m$ and porosity was about 80%, were prepared by the foaming method and then their application as support of the $Pt/{\gamma}-alumina$ catalyst for $NO_x$, reduction with propene was investigated. The pressure drop of a 2 mm porous beads filter was less than that of a 1 mm porous beads filter and the difference in pressure drop between these two increased as the flow rate increased. The catalytic activity of $Pt/{\gamma}-alumina$ washcoated on the porous bead was tested with varying Pt loading $(0.005{\sim}0.1g/cm^3),\;C_3H_6/NO$ mole ratio $(0.5{\sim}8)$, space velocity $(20,000{\sim}30,000h^{-1})$ and oxygen contents (1 and 8). Pt loading of $0.04g/cm^3$ showed the highest activity for $NO_x$ conversion. The $De-NO_x$, test was operated in the temperature range of $200{\sim}400^{\circ}C$ and the best operation temperature of the catalytic filter is about $250^{\circ}C$. As the C/N ratio increased, increase of the $NO_x$, conversion might result from the increase in exhaustion of the amount of oxygen by the reduction of hydrocarbon. $NO_x$ conversion at $20,000h^{-1}$ of space velocity shows a maximum 34% higher conversion than that at $30,000h^{-1}$. On condition that $O_2$ was 5%, space velocity was $20,000h^{-1}$ and the C/N ratio was 8, the $NO_x$ conversion exhibited a maximum of 40% at $250^{\circ}C$.

Various Temperatures Affecting Characteristics of Pt/C Cathode Catalysts for Polymer Electrolyte Membrane Fuel Cells (Polymer Electrolyte Membrane Fuel Cells용 Pt/C 캐소드 전극촉매 특성에 미치는 반응 온도)

  • Yoo, Sung-Yeol;Kang, Suk-Min;Lee, Jin-A;Rhee, Choong-Kyun;Ryu, Ho-Jin
    • Korean Journal of Materials Research
    • /
    • v.21 no.3
    • /
    • pp.180-185
    • /
    • 2011
  • This study is aimed to increase the activity of cathodic catalysts for PEMFCs(Polymer Electrolyte Membrane Fuel Cells). we investigated the temperature effect of 20wt% Pt/C catalysts at five different temperatures. The catalysts were synthesized by using chemical reduction method. Before adding the formaldehyde as reducing agent, process was undergone for 2 hours at the room temperature (RT), $40^{\circ}C$, $60^{\circ}C$, $80^{\circ}C$ and $100^{\circ}C$, respectively. The performances of synthesize catalysts are compared. The electrochemical oxygen reduction reaction (ORR) was studied on 20wt% Pt/C catalysts by using a glassy carbon electrode through cyclic voltammetric curves (CV) in a 1M H2SO4 solution. The ORR specific activities of 20wt% Pt/C catalysts increased to give a relative ORR catalytic activity ordering of $80^{\circ}C$ > $100^{\circ}C$ > $60^{\circ}C$ > $40^{\circ}C$ > RT. Electrochemical active surface area (EAS) was calculated with cyclic voltammetry analysis. Prepared Pt/C (at $80^{\circ}C$, $100^{\circ}C$) catalysts has higher ESA than other catalysts. Physical characterization was made by using X-ray diffraction (XRD) and transmission electron microscope (TEM). The TEM images of the carbon supported platinum electrocatalysts ($80^{\circ}C$, $100^{\circ}C$) showed homogenous particle distribution with particle size of about 2~3.5 nm. We found that a higher reaction temperature resulted in more uniform particle distribution than lower reaction temperature and then the XRD results showed that the crystalline structure of the synthesized catalysts are seen FCC structure.

A Study on the Optimum Design for LTCC Micro-Reformer: Design and performance evalution of monolith fuel reformer/PROX (LTCC를 소재로 하는 마이크로 리포머의 최적 설계에 관한 연구 ; 일체형 Reformer/PROX 반응기의 설계 및 성능평가)

  • Chung, C.H.;Oh, J.H.;Jang, J.H.;Jeong, M.K.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.10a
    • /
    • pp.615-616
    • /
    • 2006
  • A micro-fuel processor system integrating steam reformer and partial oxidation reactor was manufactured using low temperature cofired ceramic (LTCC). A CuO/ZnO/$Al_2O_3$ catalyst and Pt-based catalyst prepared by wet impregnation were used for steam reforming and partial oxidation, respectively. The performance of the LTCC micro-fuel processor was measured at various operating conditions such as the effect of the feed flow rate, the ratio of $H_2O/CH_3OH$, and the operating temperature on the LTCC reformer and CO clean-up system. The catalyst layer was loaded with "Fill and Dry" coating for small volume. The product gas was composed of $70\sim75%$ hydrogen, $20\sim25%$ carbon dioxide, and $1\sim2%$ carbon monoxide at $250\sim300^{\circ}C$, respectively.

  • PDF

Fabrication of Octahedral Co3O4/Carbon Nanofiber Composites for Pt-Free Counter Electrode in Dye-Sensitized Solar Cells (염료감응 태양전지의 Pt-free 상대전극을 위한 팔면체 Co3O4/탄소나노섬유 복합체 제조)

  • An, HyeLan;An, Geon-Hyoung;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.26 no.5
    • /
    • pp.250-257
    • /
    • 2016
  • Octahedral $Co_3O_4$/carbon nanofiber (CNF) composites are fabricated using electrospinning and hydrothermal methods. Their morphological characteristics, chemical bonding states, and electrochemical properties are used to demonstrate the improved photovoltaic properties of the samples. Octahedral $Co_3O_4$ grown on CNFs is based on metallic Co nanoparticles acting as seeds in the CNFs, which seeds are directly related to the high performance of DSSCs. The octahedral $Co_3O_4$/CNFs composites exhibit high photocurrent density ($12.73mA/m^2$), superb fill factor (62.1 %), and excellent power conversion efficiency (5.61 %) compared to those characteristics of commercial $Co_3O_4$, conventional CNFs, and metallic Co-seed/CNFs. These results can be described as stemmnig from the synergistic effect of the porous and graphitized matrix formed by catalytic graphitization using the metal cobalt catalyst on CNFs, which leads to an increase in the catalytic activity for the reduction of triiodide ions. Therefore, octahedral $Co_3O_4$/CNFs composites can be used as a counter electrode for Pt-free dye-sensitized solar cells.

Preparations of SPE Electrocatalysts Modified with Polypyrrole and Its Application for PEMFC (폴리피롤로 개질된 SPE 전극촉매의 제조 및 PEMFC로의 응용)

  • Kim, Jung-Hoon;Oh, Seung-Duck;Kim, Han-Sung;Park, Jong-Ho;Han, Jung-Woo;Lee, Kang Taek;Joe, Yung-Il
    • Korean Chemical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.118-124
    • /
    • 2005
  • In this study, a novel deposition method of Pt catalysts onto Nafion membranes modified with polypyrrole (PPy) has been proposed for PEMFC application. The PPy/Nafion composite membranes were fabricated by chemical polymerization of pyrrole using $FeCl_3$ and $Na_2S_2O_8$ as initiator. The proton conductivity and water uptake of the chemically prepared PPy/Nafion composites were investigated. The ionic conductivity and water uptake of PPy/Nafion composite membrane prepared with $Na_2S_2O_8$ were decreased with polymerization time of pyrrole. In the case of $FeCl_3$, the ionic conductivity was almost retained and the water uptake was decreased with polymerization time of pyrrole. When the Pt particle was deposited on PPy/Nafion composites membrane by chemical reduction of $H_2PtCl_6$, the Pt loading on Nafion membrane was enhanced by polypyrrole due to electronic conduction property. The performance evaluation with membrane electrode assembly composed of Pt/PPy/Nafion composite and diffusion electrode was carried out using a single cell. As a result of fuel cell test, current density of $569mA/cm^2$ at 0.3 V has been obtained for MEA contained with Pt/PPy/Nafion composite. This study shows that direct deposition of Pt catalysts on Nafion impregnated polypyrrole is a promising method to prepare thin catalyst layer for the PEMFC.

Determination of the Langmuir and Temkin Adsorption Isotherms of H for the Cathodic H2 Evolution Reaction at a Pt/KOH Solution Interface Using the Phase-Shift Method

  • Chun Jang-H.;Jeon Sang-K.;Chun Jin-Y.
    • Journal of the Korean Electrochemical Society
    • /
    • v.9 no.1
    • /
    • pp.19-28
    • /
    • 2006
  • The phase-shift method for determining the Langmuir, Frumkin, and Temkin adsorption isotherms ($\theta_H\;vs.\;E$) of H for the cathodic $H_2$ evolution reaction (HER) at a Pt/0.1 M KOH solution interface has been proposed and verified using cyclic voltammetric, differential pulse voltammetric, and electrochemical impedance techniques. At the Pt/0.1 M KOH solution interface, the Langmuir and Temkin adsorption isotherms ($\theta_H\;vs.\;E$), the equilibrium constants ($K_H=2.9X10^{-4}mol^{-1}$ for the Langmuir and $K_H=2.9X10^{-3}\exp(-4.6\theta_H)mol^{-1}$ for the Temkin adsorption isotherm), the interaction parameters (g=0 far the Langmuir and g=4.6 for the Temkin adsorption isotherm), the rate of change of the standard free energy of $\theta_H\;with\;\theta_H$ (r=11.4 kJ $mol^{-1}$ for g=4.6), and the standard free energies (${\Delta}G_{ads}^{\circ}=20.2kJ\;mol^{-1}$ for $k_H=2.9\times10^{-4}mol^{-1}$, i.e., the Langmuir adsorption isotherm, and $16.7<{\Delta}G_\theta^{\circ}<23.6kJ\;mol^{-1}$ for $K_H=2.9\times10^{-3}\exp(-4.6\theta_H)mol^{-1}$ and $0.2<\theta_H<0.8$, i.e., the Temkin adsorption isotherm) of H for the cathodic HER are determined using the phase-shift method. At intermediate values of $\theta_H$, i.e., $0.2<\theta_H<0.8$, the Temkin adsorption isotherm ($\theta_H\;vs.\;E$) corresponding to the Langmuir adsorption isotherm ($\theta_H\;vs.\;E$), and vice versa, is readily determined using the constant conversion factors. The phase-shift method and constant conversion factors are useful and effective for determining the Langmuir, Frumkin, and Temkin adsorption isotherms of intermediates for sequential reactions and related electrode kinetic and thermodynamic data at electrode catalyst interfaces.

Effect of the Sulfur Removal in Manufacturing Pt/C Electrocatalysts on the Performance of Phosphoric Acid Fuel Cell (인산형 연료전지용 백금촉매제조에서 황의 제거에 따른 전극 성능)

  • Shim, Jae-Cheol;Lee, Kyung-Jik;Lee, Ju-Seong
    • Applied Chemistry for Engineering
    • /
    • v.9 no.4
    • /
    • pp.486-490
    • /
    • 1998
  • Pt/C powder which was used as electrocatalyst in a Phosphoric Acid Fuel Cell(PAFC) was fabricated by colloid method. It was reported that the sulfur from reductant, $Na_2S_2O_4$, worked as a poison against catalyst during long term operation. To remove these sulfurs, we try to treat Pt/C powder by three different methods. First, we tried to remove the sulfur according to temperature and time in $H_2$ atmosphere. As the heat treatment temperature is raised up, the effect of the removal is increased but the electrode performance is decreased because of the growth of Pt particle size. The optimal heat treatment temperature is $400^{\circ}C$, the size of Pt particle is approximately $35{\sim}40{\AA}$ and the electrode performance is $360mA/cm^2$ at 0.7 V. At $400^{\circ}C$, even though the time of heat treatment is extended, size of Pt, amounts of remaining sulfur and electrode performance is almost constant. Secondly, when we removed in a crucible at $900^{\circ}C$ the removal of the sulfur was not better, but the size of Pt particle, approximately $80{\AA}$, was smaller than that of heat treatment in $H_2$ atmosphere at $900^{\circ}C$. Lastly we treated with solvents such as acetone, benzene, and carbon disulfide. It was observed that sulfur components were removed partly by extraction with solvents, the electrode performances were similar each other.

  • PDF

Electrochemical Characteristics of the MFCs using the Ceramic Membrane as a Separator (세라믹막을 이용한 미생물연료전지의 전기화학적 특성 연구)

  • Lim, Ji-Young;Park, Dae-Seok;Kim, Jin-Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.8
    • /
    • pp.5728-5735
    • /
    • 2015
  • This study attempts to verify the applicability of ceramic membrane as a separator by comparing the power generation characteristics in single-chamber MFCs using ceramic membranes to those in the MFCs using nafion membrane. The generated power in MFCs by using acetate as a substrate was more stable than that by using formate, propionate and butyrate, respectively. It was shown that the generated power by using formate substrate in MFCs was unstable and a little higher than that by using acetate, and the power generated by using propionate and butyrate were lower than that by using acetate. In order to find out the Pt catalyst effect, it was compared the power generated in MFCs using Pt-coated carbon cloth as electrode to that power using normal carbon cloth. The power generated in MFCs using Pt-coated carbon cloth as electrode was 1.2 times higher than that using normal carbon cloth. The Pt-coated carbon cloth was about 5 times more expensive than normal carbon cloth. It is suggested that both power generation efficiency and cost together should be considered in selecting electrodes of MFCs. It was found that the ceramic membrane was superior to nafion membrane by comparing to the power generation characteristics obtained. It was shown that average voltage values were $523.67mV{\pm}49.41mV$ by using synthetic wastewater, in MFCs of ceramic membrane as a separator. While average voltage values were $424.09mV{\pm}79.95mV$ by using synthetic wastewater, in MFCs of nafion membrane as a separator. The organic removal efficiency, 41.7% by using ceramic membrane was a little bit higher than 40.8% by using nafion membrane. This research implies ceramic membrane can be a valid alternative to nafion membrane as a separator when considering the power generation and the efficiency of organics removal.

Effect of Nitrogen Precursors in Non-precious Metal Catalysts on Activity for the Oxygen Reduction Reaction (비귀금속 촉매에서 사용되는 질소 전구체가 산소 환원 반응의 활성에 미치는 영향)

  • Yoon, Ho Seok;Jung, Won Suk
    • Korean Chemical Engineering Research
    • /
    • v.60 no.1
    • /
    • pp.151-158
    • /
    • 2022
  • Iron and nitrogen coordinated carbon catalyst (Fe-N-C) is the most promising non-precious metal catalyst (NPMC) studied to alternate the Pt-group oxygen reduction reaction (ORR) catalyst. In this work, Fe/N/C type catalysts are prepared by four different nitrogen precursors; N, N, N', N'-tetramethylethylenediamine (TMEDA), 1,2-ethylenediamine (EDA), m-dicyanobenzene (DCB), dicyandiamide (DCDA) which can chelate a transition metal; In addition, the catalysts conducted the pyrolysis process at four different temperatures of 700, 800, 900, 1000 ℃ to investigate the ORR activities depend on pyrolysis temperature and to find an appropriate temperature. The characterizations of catalysts were investigated by scanning electron microscope-energy dispersive X-ray spectrometer (SEM-EDS), X-ray diffraction (XRD), and element analysis (EA). The electrocatalytic activity was measured by ORR polarization, also the electron transfer number was calculated from the slope of the K-L plot. The FeNC-EDA-800 which were prepared at pyrolysis temperature of 800 ℃ with EDA showed better ORR activity than the other catalysts.

Numerical Studies on Combustion Characteristics of a Hybrid Catalytic Combustor (하이브리드 촉매 연소기의 연소특성에 관한 수치적 연구)

  • Hwang, Chul-Hong;Jeong, Young-Sik;Lee, Chang-Eon
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.328-334
    • /
    • 2000
  • The hybrid catalytic(catalytic+thermal) combustor of a lean methane-air mixture on platinum catalyst was investigated numerically using a 2-D boundary layer model with detailed homogeneous and heterogeneous chemistries. For the more accurate calculations, the actual surface site density of monolith coated with platinum was decided by the comparison with experimental data. It was found that the homogeneous reactions in the monolith had little effect on the change of temperature profile, methane conversion rate and light off location. However, the radicals such as OH and CO were produced rapidly at exit by homogeneous reactions. Thus the homogeneous reactions were important to predict the productions of CO and NOx exactly. In thermal combustor, the production of $N_2O$ was more dominant than that of NO due to the relative important of the reaction $N_2+O(+M){\to}N_2O(+M)$. Finally the production of CO and NOx by amount of methane addition were studied.

  • PDF