• Title/Summary/Keyword: Pt nanoparticles synthesis

Search Result 50, Processing Time 0.025 seconds

Synthesis of TiO2 Composited Nitrogen-doped Carbon Supports for High-Performance Methanol Oxidation Activity (고성능 메탄올 산화 반응을 위한 이산화 티타늄 복합화된 질소 도핑 탄소 지지체의 합성)

  • Jo, Hyun-Gi;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.30 no.1
    • /
    • pp.14-21
    • /
    • 2020
  • Carbon supports for dispersed platinum (Pt) electrocatalysts in direct methanol fuel cells (DMFCs) are being continuously developed to improve electrochemical performance and catalyst stability. However, carbon supports still require solutions to reduce costs and improve catalyst efficiency. In this study, we prepare well-dispersed Pt electrocatalysts by introducing titanium dioxide (TiO2) into biomass based nitrogen-doped carbon supports. In order to obtain optimized electrochemical performance, different amounts of TiO2 component are controlled by three types (Pt/TNC-2 wt%, Pt/TNC-4 wt%, and Pt/TNC-6 wt%). Especially, the anodic current density of Pt/TNC-4 wt% is 707.0 mA g-1pt, which is about 1.65 times higher than that of commercial Pt/C (429.1 mA g-1pt); Pt/TNC-4wt% also exhibits excellent catalytic stability, with a retention rate of 91 %. This novel support provides electrochemical performance improvement including several advantages of improved anodic current density and catalyst stability due to the well-dispersed Pt nanoparticles on the support by the introduction of TiO2 component and nitrogen doping in carbon. Therefore, Pt/TNC-4 wt% may be electrocatalyst a promising catalyst as an anode for high-performance DMFCs.

Gas Sensing Property of SnO2 Nanoparticles Synthesized by Flame Spray Pyrolysis (화염 분무 열분해법에 의해 합성된 SnO2 나노입자의 가스 감응 특성)

  • Kim, Hong-Chan;Shin, Dong-Wook;Hong, Seong-Hyeon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.8
    • /
    • pp.626-631
    • /
    • 2012
  • $SnO_2$ nanoparticles were synthesized by flame spray pyrolysis, which were directly deposited on Pt interdigitated substrates. Gas sensing performance was evaluated for various gases such as $H_2$, CO, $H_2S$, and $NH_3$, and it was compared with that of commercial $SnO_2$ nanopowder. The synthesis of $SnO_2$ nanoparticles was also conducted in various solvents. As a result, the primary particle size was changed with the solvent of precursor solution, and their $H_2$ sensing properties were significantly affected.

Synthesis of Au-Decorated TiO2 Nanotubes on Patterned Substrates for Selective Gas Sensor (선택적 가스 센서를 위한 Au 나노입자가 장식된 TiO2 나노튜브의 합성)

  • Kim, Do Hong;Shim, Young-Seok;Jang, Ho Won
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.305-309
    • /
    • 2014
  • Well-ordered $TiO_2$ nanotubes with Au nanoparticles are a desirable configuration to enhance the gas sensing properties such as response and selectivity due to their high surface area to volume ratio and catalytic effect of Au nanoparticles. We have synthesized the well-ordered $TiO_2$ nanotubes directly on a Pt IDEs patterned $SiO_2/Si$ substrate and then decorated Au nanoparticles on inner and outer surface of $TiO_2$ nanotubes using electrodeposition method. The Au-decorated $TiO_2$ nanotubes shows ultrahigh response to $C2_H_5OH$ and the highest increasing ratio to $H_2$ compared with other gases.

Highly ordered TiO2 nanotubes; Synthesis and applications (고도로 정렬된 TiO2 나노튜브의 제조와 활용)

  • Yoo, JeongEun;Lee, Kiyoung
    • Journal of the Korean institute of surface engineering
    • /
    • v.55 no.1
    • /
    • pp.1-8
    • /
    • 2022
  • Titanium dioxide (TiO2) is one of the most intensively investigated materials in materials science. Mostly, TiO2 has been used in the form of nanoparticles, but recently new highly ordered TiO2 nanotubes (U-tube) has been introduced and applied to various applications due to their one-dimensional charge path way. In the present paper, we described the formation process and physical properties of U-tube then, gave examples of applications in sequence. Firstly, in photocatalysis, U-tube was used with Au/Pt co-catalysts and showed enhanced photogenerated H2 efficiency compared to bare TiO2. Secondly, photoelectrochemical performance of U-tube was evaluated with different heat-treatment temperatures. As a further application, two different types of electrical cell (Ti-TiO2-Pt and Ti-TiO2-PtNP) was configurated to observe memristive behavior of U-tube. Both cells behaved as switching electrodes and follow a memristive movement in the high and low resistance state extremely well with high reproducibility.

Synthesis and Photocatalytic Properties of Thermally Stable Metal-Oxide Hybrid Nanocatalyst with Ultrathin Oxide Encapsulation

  • Naik, Brundabana;Moon, Song Yi;Kim, Sun Mi;Jung, Chan Ho;Park, Jeong Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.317.2-317.2
    • /
    • 2013
  • Ultrathin oxide encapsulated metal-oxide hybrid nanocatalysts have been fabricated by a soft chemical and facile route. First, SiO2 nanoparticles of 25~30 nm size have been synthesized by modified Stobber's method followed by amine functionalization. Metal nanoparticles (Ru, Rh, Pt) capped with polymer/citrate have been deposited on functionalized SiO2 and finally an ultrathin layer of TiO2 coated on surface which prevents sintering and provides high thermal stability while maximizing the metal-oxide interface for higher catalytic activity. TEM studies confirmed that 2.5 nm sized metal nanoparticles are well dispersed and distributed throughout the surface of 25 nm SiO2 nanoparticles with a 3-4 nm TiO2 ultrathin layer. The metal nanoparticles are still well exposed to outer surface, being enabled for surface characterization and catalytic activity. Even after calcination at $600^{\circ}C$, the structure and morphology of hybrid nanocatalysts remain intact confirm the high thermal stability. XPS spectra of hybrid nanocatalyst suggest the metallic states as well as their corresponding oxide states. The catalytic activity has been evaluated for high temperature CO oxidation reaction as well as photocatalytic H2 generation under solar simulation. The design of hybrid structure, high thermal stability, and better exposure of metal active sites are the key parameters for the high catalytic activity. The maximization of metal-TiO2 interface interaction has the great role in photocatalytic H2 production.

  • PDF

Low Temperature Synthesis and Characterization of Sol-gel TiO2 Layers

  • Jin, Sook-Young;Reddy, A.S.;Park, Jong-Hyurk;Park, Jeong-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.353-353
    • /
    • 2011
  • Titanium dioxide is a suitable material for industrial use at present and in the future because titanium dioxide has efficient photoactivity, good stability and low cost [1]. Among the three phases (anatase, rutile, brookite) of titanium dioxide, the anatase form is particularly photocatalytically active under ultraviolet (UV) light. In fabrication of photocatalytic devices based on catalytic nanodiodes [2], it is challenging to obtain a photocatalytically active TiO2 thin film that can be prepared at low temperature (< 200$^{\circ}C$). Here, we present the synthesis of a titanium dioxide film using TiO2 nanoparticles and sol-gel methods. Titanium tetra-isopropoxide was used as the precursor and alcohol as the solvent. Titanium dioxide thin films were made using spin coating. The change of atomic structure was monitored after heating the thin film at 200$^{\circ}C$ and at 350$^{\circ}C$. The prepared samples have been characterized by X-ray diffraction (XRD), scanning electron microcopy, X-ray photoelectron spectroscopy, transmission electron microscopy, ultraviolet-visible spectroscopy (UV-vis), and ellipsometry. XRD spectra show an anatase phase at low temperature, 200$^{\circ}C$. UV-vis confirms the anatase phase band gap energy (3.2 eV) when using the photocatalyst. TEM images reveal crystallization of the titanium dioxide at 200$^{\circ}C$. We will discuss the switching behavior of the Pt /sol-gel TiO2 /Pt layers that can be a new type of resistive random-access memory.

  • PDF

Room Temperature Hydrogen Sensor

  • Cho, Hyoung Jin;Zhang, Peng;Seal, Sudipta
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.51.3-51.3
    • /
    • 2010
  • Due to the recent public awareness of global warming and sustainable economic growth, there has been a growing interest in alternative clean energy sources. Hydrogen is considered as a clean fuel for the next generation. One of the technical challenges related to the use of hydrogen is safe monitoring of the hydrogen leak during separation, purification and transportation. For detecting various gases, chemiresistor-type gas sensors have been widely studied and used due to their well-established detection scheme and low cost. However, it is known that many of them have the limited sensitivity and slow response time, when used at low temperature conditions. In our work, a sensor based on Schottky barriers at the electrode/sensing material interface showed promising results that can be utilized for developing fast and highly sensitive gas sensors. Our hydrogen sensor was designed and fabricated based on indium oxide (In2O3)-doped tin oxide (SnO2) semiconductor nanoparticles with platinum (Pt) nanoclusters in combination with interdigitated electrodes. The sensor showed the sensitivity as high as $10^7%$ (Rair/Rgas) and the detection limit as low as 30 ppm. The sensor characteristics could be obtained via optimized materials synthesis route and sensor electrode design. Not only the contribution of electrical resistance from the film itself but also the interfacial effect was identified as an important factor that contribute significantly to the overall sensor characteristics. This promises the applicability of the developed sensor for monitoring hydrogen leak at room temperature.

  • PDF

Synthesis and characterization of noble metal coupled N-TiO2 nanoparticles

  • Lee, Kyusang;Moon, Jiyeon;Kim, Seonmin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.374.2-374.2
    • /
    • 2016
  • Volatile organic compounds (VOCs) in the atmosphere are harmful materials which influence indoor air environment and human health. Titanium dioxide ($TiO_2$) is photocatalyst extensively used in degradation of organic compound. To improve the photocatalytic activity in the visible light region, doping with non-metals element or loading noble metals on the surface of $TiO_2$ is generally proposed. In this study, N- doped $TiO_2$ having photocatalytic activity in visible light region was attached noble metal such as Pt, Ag, Pd, Au by coupling method. Catalytic activities of Noble metal coupled $N-TiO_2$ powders were evaluated by the improvement of their photocatalytic activities and the degradation of VOC gas. A UV-Vis spectrophotometer was used to measure the diffuse reflectance spectra of coupled $N-TiO_2$ sample. The photocatlytic activities of as prepared samples were characterized by the decoloration of aqueous MB solution under Xenon light source (UV and visible light). To measure of decomposition VOCs, ethylbenzene was selected for target VOC material and the concentration was monitored under UVLED irradiation in a closed chamber system. Adjusting the initial concentration of 10~12 ppm, to evaluate the removal characteristics by using the coupled $N-TiO_2$.

  • PDF

Optical Diagnostics of Nanopowder Processed in Liquid Plasmas

  • Bratescu, M.A.;Saito, N.;Takai, O.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.17-18
    • /
    • 2011
  • Plasma in liquid phase has attracted great attention in the last few years by the wide domain of applications in material processing, decomposition of organic and inorganic chemical compounds and sterilization of water. The plasma in liquid is characterized by three main regions which interact each - other during the plasma operation: the liquid phase, which supply the plasma gas phase with various chemical compounds and ions, the plasma in the gas phase at atmospheric pressure and the interface between these two regions. The most complex region, but extremely interesting from the fundamental, chemical and physical processes which occur here, is the boundary between the liquid phase and the plasma gas phase. In our laboratory, plasma in liquid which behaves as a glow discharge type, is generated by using a bipolar pulsed power supply, with variable pulse width, in the range of 0.5~10 ${\mu}s$ and 10 to 30 kHz repetition rate. Plasma in water and other different solutions was characterized by electrical and optical measurements. Strong emissions of OH and H radicals dominate the optical spectra. Generally water with 500 ${\mu}S/cm$ conductivity has a breakdown voltage around 2 kV, depending on the pulse width and the repetition rate of the power supply. The characteristics of the plasma initiated in ultrapure water between pairs of different materials used for electrodes (W and Ta) were investigated by the time-resolved optical emission and the broad-band absorption spectroscopy. The deexcitation processes of the reactive species formed in the water plasma depend on the electrode material, but have been independent on the polarity of the applied voltage pulses. Recently, Coherent anti-Stokes Raman Spectroscopy method was employed to investigate the chemistry in the liquid phase and at the interface between the gas and the liquid phases of the solution plasma system. The use of the solution plasma allows rapid fabrication of the metal nanoparticles without being necessary the addition of different reducing agents, because plasma in the liquid phase provides a reaction field with a highly excited energy radicals. We successfully synthesized gold nanoparticles using a glow discharge in aqueous solution. Nanoparticles with an average size of less than 10 nm were obtained using chlorauric acid solutions as the metal source. Carbon/Pt hybrid nanostructures have been obtained by treating carbon balls, synthesized in a CVD chamber, with hexachloro- platinum acid in a solution plasma system. The solution plasma was successfully used to remove the template remained after the mesoporous silica synthesis. Surface functionalization of the carbon structures and the silica surface with different chemical groups and nanoparticles, was also performed by processing these materials in the liquid plasma.

  • PDF