• Title/Summary/Keyword: Pt alloy

Search Result 168, Processing Time 0.037 seconds

Nanostructured Alloy Electrode for use in Small-Sized Direct Methanol Fuel Cells (소형 직접 메탄올 연료전지를 위한 나노 합금 전극)

  • Park Gyeong Won;Choi Jong Ho;Park In Su;Nam Woo Hyeon;Seong Yeong Eun
    • 한국전기화학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.83-88
    • /
    • 2003
  • PtRu alloy and $PtRu-WO_3$ nanocomposite thin-film electrodes for methanol electrooxidation were fabricated by means of a sputtering method. The structural and electrochemical properties of well-defined PtRu alloy thin-film electrodes were characterized using X-ray diffraction, Rutherford backscattering spectroscopy. X-ray photoelectron spectroscopy, and electrochemical measurements. The alloy thin-film electrodes were classified as follows: Pt-based and Ru-based alloy structure. Based on structural and electrochemical understanding of the PtRu alloy thin-film electrodes, the well-controlled physical and (electro)chemical properties of $PtRu-WO_3$, showed superior specific current to that of a nanosized PtRu alloy catalyst, The homogeneous dispersion of alloy catalyst and well-formed nanophase structure would lead to an excellent catalytic electrode reaction for high-performance fuel cells. In addition, the enhanced catalytic activity in nanocomposite electrode was found to be closely related to proton transfer in tungsten oxide using in-situ electrochemical transmittance measurement.

  • PDF

Strengthening method of a porcelain fused Au-Pt-Cu-0.5In alloy (도재소부용 금속구조물의 강화방법)

  • Lee, Sang-Hyeok;Doh, Jung-Mann;Jung, Ho-Yeon
    • Journal of Technologic Dentistry
    • /
    • v.25 no.1
    • /
    • pp.63-70
    • /
    • 2003
  • The microstructure and hardness of a porcelain fused Au-Pt-Cu-In alloy was investigated using optical microscopy, secondary electron microscopy, electron probe microanalyzer, transmission electron microscope, and vickers hardness. The hardness of the heat-treated Au-Pt-Cu-In quartenary alloy reached a maximum value in 30 min at 550$^{\circ}C$ in the range of 150 to 950$^{\circ}C$. In the aged Au-Pt-Cu-0.5In alloy at 550$^{\circ}C$, the hardness of the alloy rapidly increased until 30min with increasing aging time and after that it was remained nearly constant value. Based on above results, glazing and final aging of the porcelain fused Au-Pt-Cu-0.5In alloy were performed at 920 and 550$^{\circ}C$, respectively. The hardness of Au-Pt-Cu-0.5In alloy glazed at 920$^{\circ}C$ was 90 Hv and that of the alloy aged for 30 min at 550$^{\circ}C$ increased to 160 Hv. This indicates that a ceramic-metal crown with high strength can be manufactured using the glazing at 920$^{\circ}C$ and followed final aging at 550$^{\circ}C$ for 30 min.

  • PDF

Study of order-disorder transition in Pt-Ni bimetallic alloys

  • Seo, Ok-Gyun;Hwang, Jae-Seong;O, Pil-Geon;Gang, Hyeon-Cheol;Jeong, Hui-Su;Kim, -Chan;Kim, Dae-Gyun;Kim, Yun-Hui;Lee, Su-Ung;Kim, Gi-Ho;Jeong, Geon-Yeong;No, Do-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.403-403
    • /
    • 2010
  • The Pt-Ni alloy is an electro-catalyst of interest in the low temperature direct methanol fuel cells(DMFCs). It has been already reported that the Pt-Ni alloy catalysts may even have enhanced activity compared to pure platinum catalyst, depending on how the surfaces are prepared. The order-disorder transition in bimetallic alloy such as $\beta$-CuZn, Cu3Au, and CuAu have been investigated greatly by x-ray diffraction. After annealing the bimetallic alloy, the crystal structure changes as observed in the order-disorder transition of Cu3Au which changes from the face centered cubic to a simple cubic structure. Pt-Ni bimetallic alloy has been already reported to have the face centered cubic structure. However, in nano-scale Pt-Ni bimetallic alloy crystals the crystal structures changes to a simple cubic structure. In this experiment, we have studied the order-disorder transition in Pt-Ni bimetallic nanocrystals. Pt/Ni thin films were deposited on sapphire(0001) substrates by e-beam evaporator and then Pt-Ni alloy were formed by RTA at 500, 600, and $700^{\circ}C$ in a vacuum environment and Pt-Ni nano particles were formed by RTA at $1059^{\circ}C$ in a vacuum environment. We measured the structure of Pt-Ni bimetallic alloy films using synchrotron x-ray diffraction and SEM.

  • PDF

The Formation of Pt-Co Alloy Thin Films for RTD Temperature Sensors with Wide Temperature Ranges (광대역 측온저항체 온도센서용 Pt-CO 합금박막의 형성)

  • 김서연;노상수;정귀상
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.335-338
    • /
    • 1997
  • Platinum-Cobalt alloy thin films were deposited on A1$_2$O$_3$substrate by magnetron cosputtering for RTD temperature sensors with wide temperature ranges. We made Pt-Co alloy resistance patterns on the A1$_2$O$_3$substrate by lift-off method and fabricated Pt-Co alley RTD temperature sensors by using Pt-wire, Pt-paste. We investigated the physical and electrical characteristics of theme films under various conditions, input power, working vacuum, annealing temperature and time, and also after annealing these films. The resistivity and sheet resistivity of these films were decreased with increasing the annealing temperature. At input power of Pt : 4.4 W/cm$^2$, Co : 6.91 W/cm$^2$, working vacuum of 10 mTorr and annealing conditions of 800$^{\circ}C$ and 60 min, the resistivity and sheet resistivity of Pt-Co thin films was 15${\mu}$$\Omega$$.$cm and 0.5$\Omega$/ , respectively, and the TCR value of Pt-Co alloy thin films with thickness of 3000${\AA}$ was 3740ppm/$^{\circ}C$ in the temperature range of 25∼600$^{\circ}C$. These results indicate that Pt-Co alloy thin films hove potentiality for the RTD with wide temperature ranges.

  • PDF

The Effects of 2nd Metals in Pt-based Electrocatalysts on Methanol Oxidation (Pt합금 촉매에서 메탄을 산화 반응에 미치는 제2금속의 영향)

  • Kim Yeong Min;Park Gyeong Won;Choi Jong Ho;Park In Su;Seong Yeong Eun
    • 한국전기화학회:학술대회논문집
    • /
    • 2002.07a
    • /
    • pp.179-182
    • /
    • 2002
  • The electrooxidation of methanol was studied using Pt, PtRu(1:1), PtNi(1:1), PtRh(1:1) and PtOs(1:1) alloy nanoparticles for application as electrocatalysts. The effects of the second metals in the electrocatalytic activity was investigated using cyclic voltammetry (CV), chronoamperometry (CA), X-ray photoelectron spectroscopy (XPS). There are the metallic and oxygen states in the PtRu and PtOs electrocatalysts . In the XPS of PtRu and PtOs alloy nanoparticles, the oxygen sources were dominant as the second metal's effects. Negative shifts of the binding energies of Pt for the PtNi, PtRh alloy nanoparticles were determined by XPS measurements, which can be explained by electronic effects.

  • PDF

Synthesis of Pt/alloy Nanoparticles by Electrical Wire Explosion in Liquid Media and its Characteristics (액중 전기선 폭발 공정을 이용한 Pt/alloy 하이브리드 나노입자의 제조 및 그 특성)

  • Koo, Hye Young;Yun, Jung-Yeul;Yang, Sangsun;Lee, Hye-Moon
    • Particle and aerosol research
    • /
    • v.8 no.2
    • /
    • pp.83-88
    • /
    • 2012
  • The electrical wire explosion process in liquid media is promising for nano-sized metal and/or alloy particles. The hybrid Pt/Fe-Cr-Al and Pt/Ni-Cr-Fe nanoparticles for exhaust emission control system are synthesized by electrical wire explosion process in liquid media. The alloy powders have spherical shape and nanometer size. According to the wire component, while Pt/Fe-Cr-Al nanoparticles are shown the well dispersed Pt on the Fe-Cr-Al core particle, Pt/Ni-Cr-Fe nanoparticles are shown the partially separated Pt on the Ni-Cr-Fe core particle. Morphologies and component of two kinds of hybrid nano catalyst particles were characterized by transmission electron microscope and energy dispersive X-ray spectroscopy analysis.

Variation of Local Coercivity Distribution in CoCrPt Alloy Films with Pt Composition (Pt 함량에 따른 CoCrPt 합금박막의 국소보자력 분포 변화)

  • Im, Mi-Young;Choe, Sug-Bong;Shin, Sung-Chul
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.1
    • /
    • pp.20-23
    • /
    • 2002
  • The local coercivity distribution of CoCrPt alloy films prepared by dc magnetron sputtering has been investigated by means of a magneto-optical microscope magnetometer (MOMM) capable of simultaneously measuring the local properties on 400 nm spatial resolutions. Serial samples of CoCrPt alloy films were prepared with the Pt composition of a range from 6 to 28 at. %. We find that the local coercivity distribution crosses over from Gaussian to non-Gaussian distribution in CoCrPt alloy films with increasing Pt composition, with increasing trends in the width of the distribution as well as the average local coercivity. Transmission electron microscopy (TEM) studies reveal that our findings are closely correlated with the dependences of the grain size distribution and its average size on Pt concentration.

Development and Round Robin Test of Pt-Co Alloy Thin Film Standard Materials for the Quantification of Surface Compositional Analysis (표면 조성분석의 정량화를 위한 Pt-Co 합금박막 표준시료의 개발 및 공동분석)

  • 김경중
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.3
    • /
    • pp.176-186
    • /
    • 1998
  • Pure Pt, Co and their alloy thin films with three different compositions (Pt66-Co34, Pt40-Co60 and Pt18-Co82) were deposited on Si(100) wafers and proposed as a set of certified reference materials (CRM) for the quantification and standardization of surface compositional analysis. The compositions of the binary alloy thin films were controlled by in-situ XPS analyses and the certified compositions of the films have been determined by ICP-AES and RBS analyses after thin film growth. Through comparison of the compositions determined by in-situ XPS with those by ICP, relatively accurate compositions could be obtained with a matrix effect correction. Standard deviations of XPS and AES round robin tests with the Pt-Co alloy thin films were large up to about 4%. On the other hand, the average compositions of the Pt-Co alloy thin films by two methods were in a good agreement within 1%. The formation of a Pt rich surface layer by ion beam sputtering indicates that the surface modification by preferential sputtering must be understood for a better compositional analysis.

  • PDF

Nano Electrocatalysis for Fuel Cells

  • Sung, Yung-Eun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.133-133
    • /
    • 2013
  • For both oxygen reduction (ORR) and hydrogen oxidation reactions (HOR) of proton electrolyte membrane fuel cells (PEMFCs), alloying Pt with another transition metal usually results in a higher activity relative to pure Pt, mainly due to electronic modification of Pt and bifunctional behaviour of alloy surface for ORR and HOR, respectively. However, activity and stability are closely related to the preparation of alloy nanoparticles. Preparation conditions of alloy nanoparticles have strong influence on surface composition, oxidation state, nanoparticle size, shape, and contamination, which result from a large difference in redox priority of metal precursors, intrinsic properties of metals, increasedreactivity of nanocrystallites, and interactions with constituents for the synthesis such as solvent, stabilizer, and reducing agent, etc. Carbon-supported Pt-Ni alloy nanoparticles were prepared by the borohydride reduction method in anhydrous solvent. Pt-Ru alloy nanoparticles supported on carbon black were also prepared by the similar synthetic method to that of Pt-Ni. Since electrocatalytic reactions are strongly dependent on the surface structure of metal catalysts, the atom-leveled design of the surface structure plays a significant role in a high catalytic activity and the utilization of electrocatalysts. Therefore, surface-modified electrocatalysts have attracted much attention due to their unique structure and new electronic and electrocatalytic properties. The carbon-supported Au and Pd nanoparticles were adapted as the substrate and the successive reduction process was used for depositing Pt and PtM (M=Ru, Pd, and Rh) bimetallic elements on the surface of Au and Pd nanoparticles. Distinct features of the overlayers for electrocatalytic activities including methanol oxidation, formic acid oxidation, and oxygen reduction were investigated.

  • PDF

Effect of Indium on the Microstructures and Mechanical Properties of Au-Pt-Cu Alloys (Au-Pt-Cu계 합금의 미세구조 및 기계적 특성에 미치는 첨가원소 Indium 효과에 관한 연구)

  • 이상혁;도정만;정호년;민동준
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.3
    • /
    • pp.203-208
    • /
    • 2003
  • The effect of indium on the microstructure and hardness of a Au-Pt-Cu ternary alloy was investigated using optical microscopy, differential scanning calorimeter, scanning electron microscopy x-ray diffractometry, electron probe microanalizer and vickers hardness tester. A hardness of the solution floated Au-Pt-Cu-0.5In quarternary alloy with 0.5 wt.% was reached a maximum value (162 Hv) in 30 min at 550$^{\circ}C$ in the range of 150 to 950$^{\circ}C$ but that of the alloy was rapidly increased until 30 min with increasing aging time at 550$^{\circ}C$ and after that was remained almost constant value. Also, the microhardness of the matrix Au-Pt-Cu ternary alloy aged at 550$^{\circ}C$ for 30 min was continuously increased with indium contents and the grain size of Au-Pt-Cu ternary alloy decreased as increased indium contents. Analyses of EPMA and XRD revealed that the matrix Au-Pt-Cu-In quarternary alloy is composed of fcc structure and intermetallic InPt$_3$ precipitate with Ll$_2$ structure. Based on this investigation, it can be concluded that an increase in microhardness of Au-Pt-Cu-In quarternary alloy is due to precipitation hardening InPt$_3$ and grain size refinement.