• 제목/요약/키워드: Pt/SS Catalyst

검색결과 3건 처리시간 0.016초

산업 발생 노르말헥산과 벤젠 증기의 저온 분해 (Low-Temperature Thermal Decomposition of Industrial N-Hexane and Benzene Vapors)

  • 조완근;이준엽;강정환;신승호;권기동;김모근
    • 한국환경과학회지
    • /
    • 제15권7호
    • /
    • pp.635-642
    • /
    • 2006
  • Present study evaluated the low-temperature destruction of n-hexane and benzene using mesh-type transition-metal platinum(Pt)/stainless steel(SS) catalyst. The parameters tested for the evaluation of catalytic destruction efficiencies of the two volatile organic compounds(VOC) included input concentration, reaction time, reaction temperature, and surface area of catalyst. It was found that the input concentration affected the destruction efficiencies of n-hexane and benzene, but that this input-concentration effect depended upon VOC type. The destruction efficiencies increased as the reaction time increased, but they were similar between two reaction times for benzene(50 and 60 sec), thereby suggesting that high temperatures are not always proper for thermal destruction of VOCs, when considering the destruction efficiency and operation costs of thermal catalytic system together. Similar to the effects of the input concentration on destruction efficiency of VOCs, the reaction temperature influenced the destruction efficiencies of n-hexane and benzene, but this temperature effect depended upon VOC type. As expected, the destruction efficiencies of n-hexane increased as the surface area of catalyst, but for benzene, the increase rate was not significant, thereby suggesting that similar to the effects of the re- action temperature on destruction efficiency of VOCs, high catalyst surface areas are not always proper for economical thermal destruction of VOCs. Depending upon the inlet concentrations and reaction temperatures, almost 100% of both n-hexane and benzene could be destructed, The current results also suggested that when applying the mesh type transition Metal Pt/SS catalyst for the better catalytic pyrolysis of VOC, VOC type should be considered, along with reaction temperature, surface area of catalyst, reaction time and input concentration.

염소계 탄화수소의 열촉매 분해와 황화합물에 의한 촉매독 영향 평가 (Evaluation of Thermal Catalytic Decomposition of Chlorinated Hydrocarbons and Catalyst-Poison Effect by Sulfur Compound)

  • 조완근;신승호;양창희;김모근
    • 대한환경공학회지
    • /
    • 제29권5호
    • /
    • pp.577-583
    • /
    • 2007
  • 다양한 산업체에서 배출되는 독성오염물질들을 제어하는 기존의 기술이 안고 있는 일부 단점을 보완하기 위하여 전이금속 지지체로 구성된 스테인레스스틸-백금 촉매를 이용하는 열촉매 시스템을 구축하고 다섯 가지의 염소계 탄화수소[chlorobenzene(CHB), chloroform(CHF), perchloroethylene(PCE), 1,1,1-trichloroethane(TCEthane), trichloroethylene(TCE)]의 열촉매 분해효율을 평가하기 위해서 본 연구가 수행되었다. 또한, 본 연구는 촉매독이 열촉매 분해 효율에 미치는 영향을 평가하였다. 열촉매 시스템의 주요 세 가지 운전인자인 유입농도, 소각 온도 및 촉매시스템내 체류시간이 본 연구에서 고려되었다. 유입농도가 증가함에 따라 염소계탄화수소의 분해효율이 최대 100%에서 오염물질의 종류에 따라 최저 0%(CHB) 가까이로 감소하는 것으로 나타났다. TCEthane을 제외한 네 가지 염소계탄화수소의 분해효율은 온도 증가에 따라 100% 가까게 나타났으나, TCEthane의 분해효율은 온도가 증가해도 거의 변화가 없는 것으로 나타났다. TCEthane을 제외한 조사대상물질에 대하여 촉매시스템내의 체류시간이 10초에서 60초로 증가시 오염물질에 따라 30%에서 97%까지 점진적으로 증가하는 경향을 나타내었지만, TCEthane은 체류시간 30초에서 분해효율이 더 이상 증가하지 않았다. 이러한 결과는 체류시간 길이가 항상 분해효율과 비례하는 것이 아님을 제안한다. 결론적으로, 본 연구 결과는 염소계 탄화수소를 보다 고효율로 제어하기 위해서 전이금속 촉매시스템을 적용할 경우에 유입농도, 반응온도, 그리고 촉매시스템내 체류시간과 더불어 제어하고자하는 오염물질의 종류도 함께 고려되어야 할 것을 제안한다. 한편으로, 황화메틸 1.0 ppm을 첨가함으로서 조사대상오염물질의 분해효율이 $0\sim50%$로 감소하는 결과가 나타났지만, 일반적으로 산업 배기가스에서 측정되는 황화합물의 오염도 수준보다 다소 낮은 농도에 해당하는 황화메틸 0.1 ppm을 오염물질에 첨가하였을 때는 오염물질의 분해효율에 영향이 나타나지 않았다.

Non-gaseous Plasma Immersion Ion Implantation and Its Applications

  • Han, Seung-Hee;Kim, En-Kyeom;Park, Won-Woong;Moon, Sun-Woo;Kim, Kyung-Hun;Kim, Sung-Min
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.151-151
    • /
    • 2012
  • A new plasma process, i.e., the combination of PIII&D and HIPIMS, was developed to implant non-gaseous ions into materials surface. HIPIMS is a special mode of operation of pulsed-DC magnetron sputtering, in which high pulsed DC power exceeding ~1 kW/$cm^2$ of its peak power density is applied to the magnetron sputtering target while the average power density remains manageable to the cooling capacity of the equipment by using a very small duty ratio of operation. Due to the high peak power density applied to the sputtering target, a large fraction of sputtered atoms is ionized. If the negative high voltage pulse applied to the sample stage in PIII&D system is synchronized with the pulsed plasma of sputtered target material by HIPIMS operation, the implantation of non-gaseous ions can be successfully accomplished. The new process has great advantage that thin film deposition and non-gaseous ion implantation along with in-situ film modification can be achieved in a single plasma chamber. Even broader application areas of PIII&D technology are believed to be envisaged by this newly developed process. In one application of non-gaseous plasma immersion ion implantation, Ge ions were implanted into SiO2 thin film at 60 keV to form Ge quantum dots embedded in SiO2 dielectric material. The crystalline Ge quantum dots were shown to be 5~10 nm in size and well dispersed in SiO2 matrix. In another application, Ag ions were implanted into SS-304 substrate to endow the anti-microbial property of the surface. Yet another bio-application was Mg ion implantation into Ti to improve its osteointegration property for bone implants. Catalyst is another promising application field of nongaseous plasma immersion ion implantation because ion implantation results in atomically dispersed catalytic agents with high surface to volume ratio. Pt ions were implanted into the surface of Al2O3 catalytic supporter and its H2 generation property was measured for DME reforming catalyst. In this talk, a newly developed, non-gaseous plasma immersion ion implantation technique and its applications would be shown and discussed.

  • PDF