• Title/Summary/Keyword: Pt/Nafion

Search Result 61, Processing Time 0.03 seconds

Characteristics of CL-SPEEK/HPA Membrane Electrodes with Pt-Ni and Pt-Co Electrocatalysts for Water Electrolysis (전극 촉매 Pt-Ni 및 Pt-Co를 이용한 수전해용 공유가교 CL-SPEEK/HPA 막전극의 특성)

  • Woo, Je-Young;Lee, Kwang-Mun;Jee, Bong-Chul;Chung, Jang-Hoon;Moon, Sang-Bong;Kang, An-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.1
    • /
    • pp.26-34
    • /
    • 2010
  • The electrocatalystic prperties of Pt-Co and Pt-Ni with heteropolyacids (HPAs) entrapped in covalently cross-linked sulfonated poly(ether ether ketone) (CL-SPEEK)/HPA membranes were investigated for water electrolysis. The HP As, including molybdophosphoric acid (MoPA), and tungstophosphoric acid (TPA) were both used as membrane additives and electrocatalysts. The membrane electrode assembly (MEA) was prepared by a nonequilibrium impregnation-reduction (I-R) method. $Pt(NH_3)_4Cl_2$, $NiCl_2$ and $CoCl_2$ as electrocatalytic materials and $NaBH_4$ as reducing agent were used. I order to enhance electrocatalytic activity, the catalyst layer prepared above was electrodeposited (Dep) with HP A. Surface morphologies and physico-chemical properties of MEA were investigated by means of SEM, EDX and XRD. The electrocatalytic properties of composite membranes such as the cell voltage and coulombic charge in CV were in the order of magnitude: CL-SPEEK/MoPA40 (wt%) > CL-SPEEK/TPA30 > Nafion117. In the optimum cell applications for water electrolysis, the cell voltage of Pt/CL-SPEEK-MoPA40/Pt-Co (Dep-MoPA) and Pt/CL-SPEEK-TPA30/Pt-Co (Dep-TPA) was 1.75 Vat $80^{\circ}C$ and $1\;A/cm^2$ and voltage efficiency was 87.1%. Also, the observed activity of Pt-Co (84:16 atomic ratio by EDX) is a little higher than that of Pt-Ni (86: 14). The current density peak of electrodeposited electrodes were better a little than those of unactivated electrodes based on the same membranes.

Development of Conductivity Cell and Suppressor for Capillary Column Ion Chromatography (모세관 컬럼 이온 크로마토그래피를 위한 Conductivity Cell과 Suppressor의 개발)

  • Pyo, Dongjin;Kim, Hohyun
    • Analytical Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.89-93
    • /
    • 1999
  • In this study, conductivity cell and suppressor for micro-column ion chromatography were developed to analyze ions in small columns of samples. With a capillary column, the flow rate of the mobile phase is so small (usually $5{\sim}20{\mu}L/min$) that the usual conductivity cell can not be used. Therefore, we developed a new type of conductivity cell and suppressor which have small inner volumes. The conductivity cell was made with two Pt hypodermic needles (i.d. 0.010 mm) which are slightly separated (about $2{\mu}m$), and the suppressor was made of Nafion tubings. When several anions(fluoride, nitrite, nitrate, chlorate) were analyzed using developed conductivity cell and suppressor, a good chromatogram was obtained.

  • PDF

AC Impedance Study of Hydrogen Oxidation and Reduction at Pd/Nafion Interface

  • Song, Seong-Min;Koo, Il-Gyo;Lee, Woong-Moo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.12 no.3
    • /
    • pp.231-238
    • /
    • 2001
  • Electrocatalytic activity of palladium for hydrogen oxidation and reduction was studied using AC impedance method. The system under study was arranged in electrolytic mode consisting of Pd electrode under study, Pt counter electrode and Nafion electrolyte between them. Two types of Pd electrodes were used - carbon-supported Pd (Pd/C) and Pd foil electrode. Pd/C anode contacting pure hydrogen showed a steady decrease of charge transfer resistance with the increase of anodic overpotential, which is an opposite trend to that found with Pd foil anode. But Pd foil cathode also exhibited a decrease of the resistance with the increase of cathodic overpotential. The relationship between imposition of overpotential and subsequent change of the charge transfer resistance is determined by the ratio of the rate of faradaic process to the rate of mass transportation; if mass transfer limitation holds, increase of overpotential accompanies the increase of charge transfer resistance. Regardless of the physical type of Pd electrode, the anode contacting hydrogen/oxygen gas mixture did not reveal any independent arc originated from local anodic oxygen reduction.

  • PDF

Evaluation of Cell Components in Direct Formic Acid Fuel Cells (직접 개미산 연료전지의 구성요소 평가에 대한 연구)

  • Jung, Won Suk;Yoon, Sung Pil;Han, Jonghee;Nam, Suk Woo;Lim, Tae-Hoon;Oh, In-Hwan;Hong, Seong-Ahn
    • Korean Chemical Engineering Research
    • /
    • v.47 no.3
    • /
    • pp.362-367
    • /
    • 2009
  • Recently, the use of formic acid as a fuel for direct liquid fuel cells has emerged as a promising alternative to methanol. In the work presented herein, we evaluated direct formic acid fuel cells(DFAFCs) with various components under operating conditions, for example, the thickness of the proton exchange membrane, concentration of formic acid, gas diffusion layer, and commercial catalyst. The thickness of the proton exchange membrane influenced performance related to the fuel cross-over. To optimize the cell performance, we investigated on the proper concentration of formic acid and catalyst for the formic acid oxidation. Consequently, membrance-electrode assembly(MEA) consisted of $Nafion^{(R)}$-115 and the Pt-Ru black as a anode catalyst showed the maximum performance. This performance was superior to the DMFCs' one.

An investigation on anode electrocatalysts using grafting method for improvement of DMFC performances (Grafting 방법을 이용한 직접메탄올연료전지 애노드 촉매의 성능향상에 관한 연구)

  • Park, Jung-Bae;Han, Kook-Il;Kim, Ha-Suck
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.413-416
    • /
    • 2006
  • PtRu catalyst is most widely used as anode catalyst for a direct methanol fuel cell(DMFC). To promote the efficiency of the catalysts, it Is important to increase the triple phase boundary. In this study, we have tried to increase the triple phase boundaries in preparing electrocatalysts of the fuel cells, based on the process of grafting a proton-conducting agent onto the catalyst This grafted proton-conducting agent can act as an ionomer like Nafion, currently widely used ionomer. First, we have prepared the 80wt% PtRu/Ketjen Black electrocatalyst by an improved colloidal method. And, we have grafted methylsulfonate groups $(-CH_2SO_3H)$ into the catalyst as proton-conducting agents. As results of cyclic voltammety and single cell test of the membrane electrode assembly (MEA), we can conclude that the activity of the grafted electrocatalysts is superior to that of conventional ones, in performance of DMFCs. For our further study, we will investigate the optimum ratio of catalyst/grafted proton conduct Ing agent with maximum performance of a DMFC.

  • PDF

Assessment of direct glycerol alkaline fuel cell based on Au/C catalyst and microporous membrane

  • Yongprapat, Sarayut;Therdthianwong, Apichai;Therdthianwong, Supaporn
    • Advances in Energy Research
    • /
    • v.2 no.1
    • /
    • pp.21-31
    • /
    • 2014
  • The use of a microporous membrane along with Au/C catalyst for direct glycerol alkaline fuel cell was investigated. In comparison with Nafion 112, the microporous Celgard 3401 membrane provides a better cell performance due to the lower ionic resistance as confirmed by impedance spectra. The single cell using Au/C as anode catalyst prepared by using PVA protection techniques provided a higher maximum power density than the single cell with commercial PtRu/C at $18.65mW\;cm^{-2}$ The short-term current decay studies show a better stability of Au/C single cell. The higher activity of Au/C over PtRu/C was owing to the lower activation loss of Awe. The magnitude of current decay indicates a low problem of glycerol crossover from anode to cathode side. The similar performance of single cell with and without humudification at cathode points out an adequate transport of water through the microporous membrane.

Nanophase Catalyst Layer for Direct Methanol Fuel Cells

  • Chang Hyuk;Kim Jirae
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.4
    • /
    • pp.172-175
    • /
    • 2001
  • Nanophase catalyst layer for direct methanol fuel cell has been fabricated by magnetron sputtering method. Catalyst metal targets and carbon were sputtered simultaneously on the Nafion membrane surface at abnormally higher gas (Ar/He mixture) pressure than that of normal thin film processing. They could be coated as a novel structure of catalyst layer containing porous PtRu or Pt and carbon particles both in nanometer range. Membrane electrode assembly made with this layer led to a reduction of the catalyst loading. At the catalyst loading of 1.5mg $PtRu/cm^2$ for anode and 1mg $Pt/cm^2$ for cathode, it could provide $45 mW/cm^2$ in the operation at 2 M methanol, 1 Bar Air at 80"C. It is more than $30\%$ increase of the power density performance at the same level of catalyst loading by conventional method. This was realized due to the ultra fine particle sizes and a large fraction of the atoms lie on the grain boundaries of nanophase catalyst layer and they played an important role of fast catalyst reaction kinetics and more efficient fuel path. Commercialization of direct methanol fuel cell for portable electronic devices is anticipated by the further development of such design.

I-V Characteristics of a Methanol Sensor for Direct Methanol fUel Cell(DMFC) as a Function of Deposited Platinum(Pt) Thickness (직접 메탄올 연료전지용 메탄올 센서의 백금 두께의 변화에 따른 전류-전압 특성 변화)

  • Yang, Jin-Seok;Kim, Seong-Il;Kim, Chun-Keun;Park, Jung-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.1
    • /
    • pp.49-53
    • /
    • 2007
  • The direct methanol fuel cell (DMFC) is a promising power source for portable applications due to many advantages such as simple construction, compact design, high energy density, and relatively high energy-conversion efficiency. In this work, an electrochemical methanol sensor for monitoring the methanol concentration in direct methanol fuel cells was fabricated using a thin composite nafion membrane as the electrolyte. We have analyzed the I-V characteristic of the fabricated methanol sensor as a function of methanol concentration, catalyst electrode and platinum(Pt) thickness. The fabricated sensor was analyzed by I-V measurement with various methanol concentration. When we measured the sensor characteristics with 10nm Pt and at 1V, the current value was $1.30{\times}10^{-6}A,\;1.96{\times}10^{-6}A\;and\;2.80{\times}10^{-6} A$ for three methanol concentration of 1M, 2M and 3M, respectively. When the methanol concentration was fixed at 2M, the current value of the fabricated device with Pt layers of 5, 10 and 15 nm thickness was $3.06{\times}10^{-6}A,\;1.96{\times}10^{-6}A\;and\;1.00{\times}10^{-6}A$, respectively. These results lead us to the conclusion that when the methanol concentration increases, the output current increases and when the catalyst electrode become thinner, the current increase more. It showed that, the thinner the catalyst electrode, the more electrochemistry become activation.

  • PDF

enhanced performance of Membrane electrode assembly made by decal method (데칼법으로 제조된 고분자 연료전지용 전극 막 접합체의 성능평가)

  • Ryu, S.K.;Park, S.H.;Yoon, Y.G.;Lee, W.Y.;Kim, C.S.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.65-68
    • /
    • 2007
  • 전극 막 접합체를 만드는 방법 중 연속식 공정으로서의 데칼법의 장점은 제조공정의 단순화와 두께 균일성 그리고 대량생산 등을 그 예로 들 수 있다. 본 실험에서는 코터를 이용해 전극 막 접합체를 만들기 위해 높은 점도의 촉매 슬러리를 제조하였다. Johnson Mattey 사의 HiSPEC 40 wt% Pt/C 촉매와 Dupont사의 20 wt% Nafion Solution 그리고 물을 이용하여 촉매 슬러리를 제조한 후 코터를 이용하여 데칼법으로 전극 막 접합체를 제조하였다. 완성된 전극 막 접합체의 성능 평가를 실시하였으며 상용화된 전극 막 접합체와 그 특성을 비교 분석을 실시해보았다.

  • PDF

Process and Characteristics of High Power Catalyst Electrode for PEM Fuel Cell

  • Chang H.;Lim C.;Kim J.
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.3
    • /
    • pp.171-175
    • /
    • 1999
  • Novel process for high power catalyst electrode for PEM fuel cell has been developed. MEA having this catalyst electrode showed $0.5W/cm^2\;with\;0.2mg/cm^2$ of Pt loading at aunospheric humid hydrogen and oxygen condition. In this process, platinized carbon and plain carbon powders were coated with ionomer (Nafion) and hydrophobic polymer (PTFE), respectively and it could maximize two roles of catalyst electrode, l.e., reaction and gas supplying component. Those polarization characteristics proved the improved performance by reducing potential drop especially in the concentration polarization region.