• Title/Summary/Keyword: Pt/$TiO_2$

Search Result 985, Processing Time 0.033 seconds

A study on the PZT thin films for Non-volatile Memory (비휘발성 메모리용 강유전체 박막에 관한 연구)

  • Lee, B.S.;Park, J.K.;Kim, Y.W.;Park, K.S.;Kim, S.H.;Lee, D.C.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1562-1564
    • /
    • 2003
  • In this study, PZT thin films were fabricated using sol-gel processing onto Si/$SiO_2$/Ti/Pt substrates. PZT sol with different Zr/Ti ratio(20/80, 30/70, 40/60, 52/48) were prepared, respectively. The films were fabricated by using the spin-coating method on substrates. The films were heat treated at $450^{\circ}C,\;650^{\circ}C$ by rapid thermal annealing(RTA). The preferred orientation of the PZT thin films were observed by X-ray diffraction(XRD), and Scanning electron microscopy(SEM). All of the resulting PZT thin films were crystallized with perovskite phase. The fine crystallinity of the films were fabricated. Also, we found that the ferroelectric properties from the dielectric constant of the PZT thin films were over 600 degrees, P-E hysteresis constant. And the leakage current densities of films were lower than $10^{-8}A/cm^2$. It is concluded that the PZT thin films by sol-gel process to be convinced of application for ferroelectric memory device.

  • PDF

Ferroelectric Properties $\textrm{SrBi}_{2}\textrm{Ta}_{2}\textrm{O}_{9}$ Thin Films Deposited by RF Magnetron Sputtering Technique (RF magnetron sputtering법에 의해 제조된 $\textrm{SrBi}_{2}\textrm{Ta}_{2}\textrm{O}_{9}$박막의 강유전 특성에 관한 연구)

  • Park, Sang-Sik;Yang, Cheol-Hun;Yun, Sun-Gil
    • Korean Journal of Materials Research
    • /
    • v.7 no.6
    • /
    • pp.505-509
    • /
    • 1997
  • FRAM(Ferroelectric Random Access memory)에의 응용을 위해 rf magnetron sputtering법을 이용하여 SrB $i_{2}$T $a_{2}$ $O_{9}$(SBT)박막을 증착하였다. 사용된 기판은 Pt/Ti/Si $o_{2}$Si이었으며 50$0^{\circ}C$에서 증착한 후 80$0^{\circ}C$의 산소 분위기 하에서 1시간 동안 열처리하였다. 증착시 증착 압력을 변화시켜 가면서 이에 따른 특성의 변화를 고찰하였다. 박막내의 Bi와 Sr의 부족을 보상하기 위해 20mole%의 Bi $O_{2}$와 30mole%의 SrC $O_{3}$를 과잉으로 넣어 타겟을 제조후 사용하였고 박막들의 두께는 300nm의 두께를 가지며 증착압력에 따라 다른 미세 구조르 보였다. 10mtorr에서 증착한 박막의 조성은 S $r_{0.6}$B $i_{3.8}$Ta/ sub 2.0/ $O_{9.0}$이었다. 이 SBT 박막의 잔류 분극(2 $P_{r}$)과 보전계(2 $E_{c}$)값은 각각 인가 전압 5V에서 18.5 $\mu%C/$\textrm{cm}^2$과 150kV/cm이었고, signal/noise비는 3V에서 4.6을 나타내었다. 5V의 bipolar pulse하에서 $10^{10}$cycle까지 피로 현상이 나타나지 않았으며, 누설 전류 밀도는 133kV/cm에서 약 1x$10^{-7A}$$\textrm{cm}^2$의 값을 보였다.을 보였다.

  • PDF

RF 스퍼터링법을 이용한 리튬이차전지용 Li[Li0.2Mn0.54Co0.13Ni0.13]O2 양극박막의 제조 및 전기적 특성

  • Im, Hae-Na;Gong, U-Yeon;Yun, Seok-Jin;Choe, Ji-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.413-413
    • /
    • 2011
  • 최근 전기, 전자, 반도체 산업의 발전으로 전 고상 박막리튬전지는 초소형, 초경량의 마이크로 소자의 구현을 위한 고밀도 에너지원으로 각광받고 있다. 현재 양극박막은 대부분LCO(LiCoO2)계열이 이용되고 있으나, 코발트는 높은 가격과 인체 유해성 뿐만 아니라 상대적으로 낮은 용량(~140 mAh/g)등의 단점을 갖고 있어 향후 보다 고용량의 양극박막이 요구된다. 3원계 양극활물질 LiMO2(M=Co,Ni,Mn,etc.)은 우수한 충방전 효율 과 열적 안정성 뿐 아니라 277mAh/g의 높은 이론용량을 갖고 있어 고용량 양극박막으로의 적용시 고용량 박막이차전지 제작이 가능하다. 본 연구에서는 전 고상 박막 전지의 구현을 위하여 RF 스퍼터링법을 사용하여 Li[Li0.2Mn0.54Co0.13Ni0.13]O2 박막을 증착하였다. Li/MnCoNi의 몰 비율을 변화시켜 높은 전기화학적 특성을 갖는 분말을 합성하여 제조한 타겟으로 Pt/TiO2/SiO2/Si 기판위에 RF 스퍼터법을 이용하여 박막을 성장시켰다. 박막 증착 시 가스의 비율은 Ar:O2=3:1로 하고 증착 압력의 조절(0.005~0.02 torr)을 통하여 박막의 두께와 표면 특성을 조절하며 성장시켰다. 또한 박막을 다양한 온도에서($400{\sim}550^{\circ}C$) 열처리하여 결정화도와 전기화학적 특성을 측정하였다. 증착 된 박막의 구조적 특성은 X-ray diffraction(XRD) 과 scanning electron microscopy(SEM)로 관찰되었다. 박막의 전기화학적 특성 평가를 위하여 Cyclic voltammatry를 측정하여 가역성의 정도를 확인하고 WBC3000 battery cycler를 이용한 half-cell 테스트를 통하여 박막의 용량을 평가하였다.

  • PDF

Microstructural and Electrical Properties of Bi0.9A0.1Fe0.975V0.025O3+α(A=Nd, Tb) Thin Films by Chemical Solution Deposition Method (화학용액 증착법으로 제조한 Bi0.9A0.1Fe0.975V0.025O3+α(A=Nd, Tb) 박막의 구조와 전기적 특성)

  • Chang, Sung-Keun;Kim, Youn-Jang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.10
    • /
    • pp.646-650
    • /
    • 2017
  • We have evaluated the ferroelectric and electrical properties of pure $BiFeO_3$ (BFO) and $Bi_{0.9}A_{0.1}Fe_{0.975}V_{0.025}O_{3+{\alpha}}$ (A=Nd, Tb) thin films on $Pt(111)/Ti/SiO_2/Si(100)$ substrates by using a chemical solution deposition method. The remnant polarization ($2P_r$) of the $Bi_{0.9}Tb_{0.1}Fe_{0.975}V_{0.025}O_{3+{\alpha}}$ (BTFVO) thin film was approximately $65{\mu}C/cm^2$, with a maximum applied electric field of 950 kV/cm and a frequency of 10 kHz, where as that of the $Bi_{0.9}Nd_{0.1}Fe_{0.975}V_{0.025}O_{3+{\alpha}}$ (BNFVO) thin film was approximately $37{\mu}C/cm^2$ with a maximum applied electric field of 910 kV/cm. The leakage current density of the co-doped BNFVO thin film was four orders of magnitude lower than that of the pure BFO thin film, at $2.75{\times}10^{-7}A/cm^2$ with an applied electric field of 100 kV/cm. The grain size and uniformity of the co-doped BNFVO and BTFVO thin films were improved, in comparison to the pure BFO thin film, through structural modificationsdue to the co-doping with Nd and Tb.

Fabrication and Electrical Properties of PZT/BFO Multilayer Thin Films

  • Jo, Seo-Hyeon;Nam, Sung-Pil;Lee, Sung-Gap;Lee, Seung-Hwan;Lee, Young-Hie;Kim, Young-Gon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.5
    • /
    • pp.193-196
    • /
    • 2011
  • Lead zirconate titanate (PZT)/ bismuth ferrite (BFO) multilayer thin films have been fabricated by the spin-coating method on Pt(200 nm)/Ti(10 nm)/$SiO_2$(100 nm)/p-Si(100) substrates using $BiFeO_3$ and $Pb(Zr_{0.52}Ti_{0.48})O_3$ metal alkoxide solutions. The PZT/BFO multilayer thin films show a uniform and void-free grain structure, and the grain size is smaller than that of PZT single films. The reason for this is assumed to be that the lower BFO layers play an important role as a nucleation site or seed layer for the formation of homogeneous and uniform upper PZT layers. The dielectric constant and dielectric losses decreased with increasing number of coatings, and the six-layer PZT/BFO thin film has good properties of 162 (dielectric constant) and 0.017 (dielectric losses) at 1 kHz. The remnant polarization and coercive field of three-layer PZT/BFO thin films were 13.86 ${\mu}C/cm^2$ and 37 kV/cm respectively.

Dielectric and electric properties of sol-gel derived PZT thin Films (솔-젤법으로 제조한 PZT박막의 유전 및 전기적 특성)

  • Hong, Kwon;Kim, Byong-Ho
    • Electrical & Electronic Materials
    • /
    • v.9 no.3
    • /
    • pp.251-258
    • /
    • 1996
  • Sol-Gel derived ferroelectric Pb(Z $r_{0.52}$ $Ti_{0.48}$) $O_{3}$ thin films have been fabricated on Pt/Ti/ $SiO_{2}$/Si substrate. Two kinds of fast annealing methods, F-I (six times of intermediate and final annealing) and F-II(one final annealing after six times of intermediate annealing) were used for preparation of multi-coated PZT thin films. As the annealing temperature was increased, high capacitance could be obtained, for instance, 2700.angs.-thick PZT thin film annealed at 680.deg. C had a capacitance value of approximately 20nF at 1kHz. In addition, it is found that the dielectric constant is a function of the perovskite phase fraction. In case of F-I method, PZT thin film had a remanent polarization(Pr) of 8-15.mu.C/c $m^{2}$ and a coercive field( $E_{c}$) of 35-44kV/cm according to annealing temperature, whereas PZT film fabricated by F-II method had as high as 24-25.mu.C/c $m^{2}$ and 48-59kV/cm, respectively. As a result of measuring Curie temperature, PZT thin film had a range of 460-480.deg. C by F-I method and more or less higher range of 525-530.deg. C by F-II method, which implied that different microstructures could cause the different Curie temperature. Through I-V measurement, leakage current of PZT thin film fabricated by F-I and F-II methods was 64nA/c $m^{2}$ and 2.2.mu.A/c $m^{2}$ in the electric field of 100kV/cm, respectively.y.y.y.

  • PDF

Structural and Electrical Properties of Bi0.9A0.1Fe0.975Zn0.025O3-δ (A=Eu, Dy) BiFeO3 Thin Films by Chemical Solution Deposition (화학 용액 증착법으로 제조한 Bi0.9A0.1Fe0.975Zn0.025O3-δ (A=Eu, Dy) 박막의 구조와 전기적 특성)

  • Kim, Youn-Jang;Kim, Jin-Won;Chang, Sung-Keun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.4
    • /
    • pp.226-230
    • /
    • 2018
  • Pure $BiFeO_3$ (BFO) and codoped $Bi_{0.9}A_{0.1}Fe_{0.975}Zn_{0.025}O_{3-{\delta}}$ (A=Eu, Dy) thin films were prepared on Pt(111)/Ti/$SiO_2$/Si(100) substrates by chemical solution deposition. The remnant polarizations (2Pr) of the $Bi_{0.9}Eu_{0.1}Fe_{0.975}Zn_{0.025}O_{3-{\delta}}$ (BEFZO) and $Bi_{0.9}Dy_{0.1}Fe_{0.975}Zn_{0.025}O_{3-{\delta}}$ (BDFZO) thin films were about 36 and $26{\mu}C/cm^2$ at the maximum electric fields of 900 and 917 kV/cm, respectively, at 1 kHz. The codoped BEFZO and BDFZO thin films showed improved electrical properties, and leakage current densities of 3.68 and $1.21{\times}10^{-6}A/cm^2$, respectively, which were three orders of magnitude lower than that of the pure BFO film, at 100 kV/cm.

A Study on the Electric and Ferroelectric Properties of PZT(30/70) Thick Film Prepared by Using 1,3-Propanediol (1, 3-Propanediol 을 이용해 제작된 PZT(30/70) 후막의 전기적 및 강유전 특성에 관한 연구)

  • 송금석;장동훈;강성준;윤영섭
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.9
    • /
    • pp.631-637
    • /
    • 2003
  • We have evaluated structural and electric, ferroelectric properties of PZT(30/70) thick film prepared by using 1,3-propanediol based sol-gel method on Pt/Ti/SiO$_2$/Si substrates. Rapid thermal annealing (RTA) is used to reduce the thermal stress and final furnace annealing is processed at $650^{\circ}C$. As the results of SEM analysis, we find that we get 350 nm in thickness for one coating and 1 $\mu$m for three times of coating. In the results of C-D analysis at 1 kHz, dielectric constant ($\varepsilon$$_{r}$) and dissipation factor were 886 and 0.03, respectively. C-V curve is shaped as a symmetrical butterfly. Leakage current density at 200 kV/cm is 1.23${\times}$10$^{-5}$ A/cm$^2$ and in the results of hysteresis loops measured at 150 kV/cm, the remnant polarization (P$_{r}$) and the coercive field (E$_{c}$) are 33.8 $\mu$C/cm$^2$ and 56.9 kV/cm, respectively. PZT(30/70) thick film exhibits relatively good ferroelectric, electric properties.s..

The Effect of Deposition Parameters on the Morphology of KLN Thin Films (증착 조건이 KLN 박막의 형상에 미치는 영향)

  • Park, Seong-Geun;Jeon, Byeong-Eok;Kim, Jin-Su;Kim, Ji-Hyeon;Choe, Byeong-Jin;Nam, Gi-Hong;Ryu, Gi-Hong;Kim, Gi-Wan
    • Korean Journal of Materials Research
    • /
    • v.11 no.1
    • /
    • pp.27-33
    • /
    • 2001
  • The growth characteristics of 4-fold grain which was appeared in KLN deposition on $Pt/Ti/SiO_2/Si(100)$ substrate was studied by varying process variables. Substrate temperature, sputtering pressure, rf power were selected as process variables, and experiment was carried out near optimum fabrication condition. When using K and Li enriched target, the optimum fabrication conditions were substrate temperature of $600^{\circ}C$, sputtering pressure of 150mTorr, rf power of 100 W and its surface morphology is sensitively varied by small deposition condition changes. KLN is composed of elements which have large difference of boiling point. And it is difficult to fabricate thin film at high temperature and high vacuum deposition condition. Furthermore the phenomenon during deposition process can not be explained by using Thorton's model which explains the relation between thin film structure and melting point of thin film materials. These phenomenon can be explained using boiling point of elements which consist of thin film material.

  • PDF

Fractal Analysis of the Surface in Thin Film Capacitors

  • Hong, Kyung-Jin;Min, Yong-Ki;Cho, Jae-Cheol
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.11C no.2
    • /
    • pp.18-22
    • /
    • 2001
  • The thin films of high permitivity in ferroelectric materials using a capacitor are applied to DRAMs and FRAMs. (Ba, Sr)TiO$_3$ thin as ferroelectric materials were prepared by the sol-gel method and made by spin-coating on the Pt/Sio$_2$/Si substrate at 4,000 [rpm] for 10 seconds. The structural characteristics of the surface were analyzed by fractal dimension. The thickness of BST ceramics thin films was about 260∼280 [nm]. The property of the leakage current was stable with 10-9∼10-11[A] when the applied voltage was 0∼3[V]. BST thin films ha low leakage current properties when fractal dimension was low and a coating area was high.