• Title/Summary/Keyword: Pseudorange Corrections

Search Result 16, Processing Time 0.023 seconds

Performance Analysis of Korean WADGPS Algorithms with NDGPS Data

  • Yun, Young-Sun;Kim, Do-Yoon;Pyong, Chul-Soo;Kee, Chang-Don
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.6 no.1
    • /
    • pp.44-51
    • /
    • 2005
  • To provide more accurate and reliable positioning and timing services to Korean nationwide users, the Ministry of Maritime Affairs and Fisheries of Korea is implementing Korean NDGPS (Nationwide DGPS), which is operational partly. And it also has a plan to construct WADGPS (Wide Area Differential GPS) system using sites and equipments of the NDGPS reference stations. For that, Seoul National University GNSS Laboratory is implementing and testing prototypes of WRS (Wide-area Reference Station) and WMS (Wide-area Master Station). Until now, because there are not enough installed WRSs to be used for computing wide area correction information, we cannot test algorithms of WMS with the data processed actually in WRSs. Therefore to evaluate the performance of the algorithms, we made a MATLAB program which can process RINEX (Receiver INdependent Exchange) format data with WADGPS algorithm. Using that program which consists of WRS, WMS and USER modules, we processed the data collected at NDGPS reference stations, which are saved in RINEX format. In WRS module, we eliminate the atmospheric delay error from the pseudorange measurement, smooth the measurement by hatch filter and calculate pseudorange corrections for each satellite. WMS module collects the processed data from each reference stations to generate the wide area correction information including estimated satellite ephemeris errors, ionospheric delays at each grid point, UDRE (User Differential Range Error), GIVE (Grid Ionosphere Vertical Error) and so on. In USER part, we use the measurements of reference stations as those of users and estimate the corrected users' positions and protection levels (HPL, VPL). With the results of estimation, we analyzed the performance of the algorithms. We assured the estimated UDRE /GIVE values and the protection levels bound the corresponding errors effectively. In this research, we can expect the possible performance of WADGPS in Korea, and the developed modules will be useful to implementation and improvement of the algorithms.

Development and Positioning Accuracy Assessment of Precise Point Positioning Algorithms based on GPS Code-Pseudorange Measurements (GPS 코드의사거리 기반 정밀단독측위(PPP) 알고리즘 개발 및 측위 정확도 평가)

  • Park, Kwan Dong;Kim, Ji Hye;Won, Ji Hye;Kim, Du Sik
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.1
    • /
    • pp.47-54
    • /
    • 2014
  • Precise Point Positioning (PPP) algorithms using GPS code pseudo-range measurements were developed and their accuracy was validated for the purpose of implementing them on a portable device. The group delay, relativistic effect, and satellite-antenna phase center offset models were applied as fundamental corrections for PPP. GPS satellite orbit and clock offsets were taken from the International GNSS Service official products which were interpolated using the best available algorithms. Tropospheric and ionospheric delays were obtained by applying mapping functions to the outputs from scientific GPS data processing software and Global Ionosphere Maps, respectively. When the developed algorithms were tested for four days of data, the horizontal and vertical positioning accuracies were 0.8-1.6 and 1.6-2.2 meters, respectively. This level of performance is comparable to that of Differential GPS, and further improvements and fine-tuning of this suite of PPP algorithms and its implementation at a portable device should be utilized in a variety of surveying and Location-Based Service applications.

Accuracy Analysis of Code-based PPP-RTK Positioning Utilizing K-SSR Correction Messages Outside the Reference Network

  • Yoon, Woong-Jun;Park, Kwan-Dong;Kim, Hye-In;Woo., Seung;Park, Junpyo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.6 no.2
    • /
    • pp.79-86
    • /
    • 2017
  • Precise Point Positioning-Real Time Kinematic (PPP-RTK) refers to a technology that combines PPP with network-RTK in which a user does not directly receive observed data from a reference station but receives State-Space Representation (SSR) messages corrected for error components from a central processing station through Networked Transport of RTCM via Internet Protocol (NTRIP) or Digital Multimedia Broadcasting (DMB) for purposes of positioning. SSR messages, which refer to corrections used in PPP-RTK, are generated by a central processing station using real-time observed data collected from reference stations and account for corrections needed due to the ionosphere, troposphere, satellite orbital errors, satellite time offsets, and satellite biases. This study used a type of SSR message provided in South Korea, known as Korea-SSR (K-SSR), to implement a PPP-RTK algorithm based on code-pseudorange measurements and validated its accuracy within the reference station network. In order to validate the accuracy of the implemented algorithm outside of the network, the K-SSR was extrapolated and applied to positioning in reference stations in Changchun, China (CHAN) and Japan (AIRA). This also entailed a quantitative evaluation that measured improvements in accuracy in comparison with point positioning. The results of the study showed that positioning applied with extrapolated K-SSR correction data was more accurate in both AIRA and CHAN than point positioning with improvements of approximately 20~50%.

Based on Multiple Reference Stations Ionospheric Anomaly Monitoring Algorithm on Consistency of Local Ionosphere (협역 전리층의 일관성을 이용한 다중 기준국 기반 전리층 이상 현상 감시 기법)

  • Song, Choongwon;Jang, JinHyeok;Sung, Sangkyung;Lee, Young Jae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.7
    • /
    • pp.550-557
    • /
    • 2017
  • Ionospheric delay, which affect the accuracy of GNSS positioning, is generated by electrons in Ionosphere. Solar activity level, region and time could make change of this delay level. Dual frequency receiver could effectively eliminate the delay using difference of refractive index between L1 to L2 frequency. But, Single frequency receiver have to use limited correction such as ionospheric model in standalone GNSS or PRC(pseudorange correction) in Differential GNSS. Generally, these corrections is effective in normal condition. but, they might be useless, when TEC(total electron content) extremely increase in local area. In this paper, monitoring algorithm is proposed for local ionospheric anomaly using multiple reference stations. For verification, the algorithm was performed with specific measurement data in Ionospheric storm day (20. Nov. 2003). this algorithm would detect local ionospheric anomaly and improve reliability of ionospheric corrections for standalone receiver.

Development of Removal Techniques for PRC Outlier & Noise to Improve NDGPS Accuracy (국토해양부 NDGPS 정확도 향상을 위한 의사거리 보정치의 이상점 및 노이즈 제거기법 개발)

  • Kim, Koon-Tack;Kim, Hye-In;Park, Kwan-Dong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.2
    • /
    • pp.63-73
    • /
    • 2011
  • The Pseudorange Corrections (PRC), which are used in DGPS as calibration messages, can contain outliers, noise, and anomalies, and these abnormal events are unpredictable. When those irregular PRC are used, the positioning error gets higher. In this paper, we propose a strategy of detecting and correcting outliers, noise, and anomalies by modeling the changing pattern of PRC through polynomial curve fitting techniques. To validate our strategy, we compared positioning errors obtained without PRC calibation with those with PRC calibration. As a result, we found that our algorithm performs very well; the horizontal RMS error was 3.84 m before the correction and 1.49 m after the correction.

Error Assessment of Attitude Determination Using Wireless Internet-Based DGPS (무선인터넷기반의 DGPS를 이용한 동체의 자세결정 성능평가)

  • Lee Hong Shik;Lim Sam Sung;Park Jun Ku
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.2
    • /
    • pp.101-108
    • /
    • 2005
  • Inertial Navigation System has been used extensively to determine the position, velocity and attitude of the body. An INS is very expensive, however, heavy, power intensive, requires long setting times and the accuracy of the system is degraded as time passed due to the accumulated error. Global Positioning System(GPS) receivers can compensate for the Inertial Navigation System with the ability to provide both absolute position and attitude. This study describes a method to improve both the accuracy of a body positioning and the precision of an attitude determination using GPS antenna array. Existing attitude determination methods using low-cost GPS receivers focused on the relative vectors between the master and the slave antennas. Then the positioning of the master antenna is determined in meter-level because the single point positioning with pseudorange measurements is used. To obtain a better positioning accuracy of the body in this research, a wireless internet is used as an alternative data link for the real-time differential corrections and dual-frequency GPS receivers which is expected to be inexpensive was used. The numerical results show that this system has the centimeter level accuracy in positioning and the degree level accuracy in attitude.