• Title/Summary/Keyword: Pseudomonas tolaasii

Search Result 59, Processing Time 0.03 seconds

Effects of Various Detergents on the Tolaasin-induced Hemolysis and the Tolaasin-induced Channel

  • Park, Kyoung-Sun;Kim, Young-Kee
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1997.07a
    • /
    • pp.23-23
    • /
    • 1997
  • Tolaasin, a 1.9 kDa peptide forming membrane pores, is produced by Pseudomonas tolaasii and causes a brown blotch disease on cultivated oyster mushroom. During the purification of peptide by a gel permeation chromatography, we have found that fractions of molecular weight ranges between ∼2 to 40 kDa have hemolytic activities and the fractions of higher M.W. showed faster hemolysis.(omitted)

  • PDF

Expression of Attacin-like Antibacterial Protein NUECIN in Pleurotus ostreatus

  • Kim, Beom-Gi;Yun, Eun-Young;Yoo, Youngbok
    • Journal of Mushroom
    • /
    • v.9 no.3
    • /
    • pp.91-95
    • /
    • 2011
  • Pleurotus ostreatus, the oyster mushroom, is one of the most important edible mushrooms. It is especially susceptible to bacterial blotch disease, which is caused by Pseudomonas tolaasii. In order to develop bacterial blotch disease-resistant transgenic mushroom, NUECIN cDNA, a gene for an antibacterial peptide cloned from Bombyx mori, was overexpressed in Pleurotus ostreatus. NUECIN cDNA was fused to the ${\beta}$-TUBULIN promoter of oyster mushroom and co-transformed with the pTRura3-2 vector into the uracil auxotrophic mutant strain. Twelve transformants containing the NUECIN gene were identified by genomic PCR and Southern blot analysis. NUECIN gene expression was confirmed by Northern blot analysis. Three transformants showed the transcriptional expression of the gene. However, we could not detect expression of the protein in the transformants. This study showed the possibility of transgenic mushroom development for disease resistance.

Isolation and Identification of Endophytic Bacteria with Plant Growth Promoting Activity and Biocontrol Potential from Wild Pistachio Trees

  • Etminani, Faegheh;Harighi, Behrouz
    • The Plant Pathology Journal
    • /
    • v.34 no.3
    • /
    • pp.208-217
    • /
    • 2018
  • In this study, samples were collected from the leaves and stems of healthy wild Pistachio trees (Pistacia atlantica L.) from various locations of Baneh and Marivan regions, Iran. In total, 61 endophytic bacteria were isolated and grouped according to phenotypic properties. Ten selected isolates from each group were further identified by partial sequencing of the 16S rRNA gene. Based on the results, isolates were identified as bacteria belonging to Pseudomonas, Stenotrophomonas, Bacillus, Pantoea and Serratia genus. The ability of these isolates was evaluated to phytohormone production such as auxin and gibberellin, siderophore production, phosphate solubilization, atmospheric nitrogen fixation, protease and hydrogen cyanide production. All strains were able to produce the plant growth hormone auxin and gibberellin in different amounts. The majority of strains were able to solubilize phosphate. The results of atmospheric nitrogen fixation ability, protease and siderophore production were varied among strains. Only Ba66 could produce a low amount of hydrogen cyanide. The results of biocontrol assay showed that Pb78 and Sp15 strains had the highest and lowest inhibition effects on bacterial plant pathogens, Pseudomonas syringae pv. syringae Pss20 and Pseudomonas tolaasii Pt18 under in vitro condition. Pb3, Pb24 and Pb71 strains significantly promote root formation on carrot slices. To our knowledge this is the first report of the isolation of endophytic bacterial strains belonging to Pantoea, Bacillus, Pseudomonas, Serratia and Stenotrophomonas genus from wild pistachio trees with plant growth promoting potential and biocontrol activity.

Development of Simple Colorimetric Method for Detecting Contamination of Liquid Spawn of Oyster Mushroom by pH Indicator (pH지시약을 이용한 느타리버섯 액체종균 오염 간이진단법 개발)

  • Jang, Myoung-Jun;Lee, Yun-Hae;Ju, Young-Cheol
    • The Korean Journal of Mycology
    • /
    • v.36 no.1
    • /
    • pp.9-15
    • /
    • 2008
  • For the detection of contaminated liquid spawn, we selected suitable medium, indicator and developed method of diagnosis. The growth of pathogenic bacteria, Pseudomonas sp., and fungi, Trichoderma sp., in YPL media was better than in PDA and NA. In addition, the changes of color and absorbance of media were obviously showed when contaminated liquid spawn by pathogenic bacteria and fungi was incubated on YPL including phenol red for 48 hour at $25^{\circ}C$. The color of YPLP after incubating of infected liquid spawn by Pseudomonas sp. and Trichoderma sp. were changed from orange to red and to scarlet, respectively. Whereas, the color of YPLP after incubation of only Pleurotus ostreatus indicated yellow at liquid spawn. Therefore, it is possible to easily distinguish contaminated liquid spawn by color of change in YPLP.

Mechanism of $Zn^{2+}$ Inhibition on Tolaasin Channel Activity

  • Cho, Kwang-Hyun;Kim, Sook-Jin;Kim, Young-Kee
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2001.06a
    • /
    • pp.40-40
    • /
    • 2001
  • Tolaasin is a 1.9 kDa peptide produced by Pseudomonas tolaasii and causes a brown blotch disease on cultivated oyster mushrooms. These molecules form channels in the plasma membranes of various cells including red blood cells and destroy cellular structure, known as 'colloid osmotic lysis'. In order to understand the molecular mechanism of tolaasin-mediated channel formation, the effect of Zn$^{2+}$ was investigated on hemolysis and channel formation since Zn$^{2+}$ has been known to block the tolaasin activity.(omitted)ted)

  • PDF

pH-dependence in the inhibitory effects of Zn2+ and Ni2+ on tolaasin-induced hemolytic activity (Zn2+와 Ni2+에 의한 톨라신 용혈활성 저해효과의 pH 의존성)

  • Yun, Yeong-Bae;Choi, Tae-Keun;Kim, Young-Kee
    • Journal of Applied Biological Chemistry
    • /
    • v.61 no.3
    • /
    • pp.213-217
    • /
    • 2018
  • Tolaasin secreted by Pseudomonas tolaasii is a peptide toxin and causes brown blotch disease on the cultivated mushrooms by collapsing cellular and fruiting body structure. Toxicity of tolaasin was evaluated by measuring hemolytic activity because tolaasin molecules form membrane pores on the red blood cells and destroy cell membrane structure. In the previous studies, we found that tolaasin cytotoxicity was suppressed by $Zn^{2+}$ and $Ni^{2+}$. $Ni^{2+}$ inhibited the tolaasin-induced hemolysis in a dose-dependent manner and its $K_i$ value was 1.8 mM. The hemolytic activity was completely inhibited at the concentration higher than 10 mM. The inhibitory effect of $Zn^{2+}$ on tolaasin-induced hemolysis was increased in alkaline pH, while that of $Ni^{2+}$was not much dependent on pH. When the pH of buffer solution was increased from pH 7 to pH 9, the time for 50% hemolysis ($T_{50}$) was increased greatly by $100{\mu}M$ $Zn^{2+}$; however, it was slightly increased by 1 mM $Ni^{2+}$ at all pH values. When the synergistic effect of $Zn^{2+}$ and $Ni^{2+}$ on tolaasin-induced hemolysis was measured, it was not dependent on the pH of buffer solution. Molecular elucidation of the difference in pH-dependence of these two metal ions may contribute to understand the mechanism of tolaasin pore formation and cytotoxicity.

Development of Optimal Culture Media for the Stable Production of Mushroom (버섯의 안정적 생산을 위한 최적배지의 개발)

  • Gal, Sang-Wan;Lee, Sang-Won
    • Applied Biological Chemistry
    • /
    • v.45 no.2
    • /
    • pp.71-76
    • /
    • 2002
  • Several antagonistic bacteria, SD-1, 4, 10, 11, 14, 15, and 16, which have strong CMCase and amylase activities, were isolated from the fermented mushroom media. Among them, SD-1, 10, 11, and 15 have strong antibacterial activities against the mushroom pathogenic bacteria Pseudomonas sp., and SD-1, 10, 11, 14, and 16 have strong antifungal activities against the mushroom pathogenic fungi, Trichoderma sp. SD-14, 15, and 16 did not inhibit the growth of mushroom Pleurotus eryngii ASI-2302, and Pleurotus ostreatus ASI-2042 and ASI-2180. When the culture broth mixture of the seven bacterial strains was applied to the mushroom media, the growths of pathogens, Pseudomonas sp. and Trichoderma sp., were inhibited.

Characteristics of microorganism isolated from Cotton Waste Media for the Oyster Mushroom Cultivation (느타리버섯 균상재배 중 배지에서 분리한 미생물의 특성)

  • Lee, Chan-Jung;Jhune, Chang-Sung;Cheong, Jong-Chun;Oh, Jin-A;Han, Hye-Su;Um, Na-Na
    • The Korean Journal of Mycology
    • /
    • v.38 no.2
    • /
    • pp.120-124
    • /
    • 2010
  • This study was carried out to investigate interaction between mushroom mycelium and microorganisms in cotton waste media for the shelf cultivation of oyster mushroom. Two oyster mushroom farms was selected for this experiment. One was good mushroom farm (farmhouse I) and the other failed mushroom farm (farmhouse II). In farmhouse I, the inhibition microorganisms were higher toward the end of growth stage than the early stage, but the result of farmhouse II was opposite. Effects of the mycelium growth on plate culture showed same results on mushrooms as the earlier one. And the mycelium growth was influenced by secretory materials of microorganisms. Among of the isolates, Only few microorganism had inhibitory effects on either P. tolaasii or T. harzianum causing the disease of oyster mushrooms. But more microorganisms had inhibition effects on P. agarici.

Inhibitory Effect of Ni2+ on the Tolaasin-induced Hemolysis (톨라신의 용혈활성에 대한 Ni2+의 저해효과)

  • Choi, Tae-Keun;Wang, Hee-Sung;Kim, Young-Kee
    • Journal of Applied Biological Chemistry
    • /
    • v.52 no.1
    • /
    • pp.28-32
    • /
    • 2009
  • The bacterial toxin, tolaasin, causes brown blotch disease on the cultivated mushrooms by collapsing fungal and fruiting body structure of mushroom. Cytotoxicity of tolaasin was evaluated by measuring hemolytic activity because tolaasins form membrane pores on the red blood cells and destroy cell structure. While we investigated the inhibitions of hemolytic activity of tolaasin by $Zn^{2+}$ and $Cd^{2+}$, we found that $Ni^{2+}$ is another antagonist to block the toxicity of tolaasin. $Ni^{2+}$ inhibited the tolaasin-induced hemolysis in a dose-dependent manner and its Ki value was $\sim10$ mM, implying that the inhibitory effect of $Ni^{2+}$ is stronger than that of $Cd^{2+}$. The hemolytic activity was completely inhibited by $Ni^{2+}$ at the concentration higher than 50 mM. The effect of $Ni^{2+}$ was reversible since it was removed by the addition of EDTA. When the tolaasin-induced hemolysis was suppressed by the addition of 20 mM $Ni^{2+}$, the subsequent addition of EDIA immediately initiated the hemolysis. Although the mechanism of $Ni^{2+}$ -induced inhibition on tolaasin toxicity is not known, $Ni^{2+}$ could inhibit any of fallowing processes of tolaasin action, membrane binding, molecular multimerization, pore formation, and massive ion transport through the membrane pore. Our results indicate that $Ni^{2+}$ inhibits the pore activity of tolaasin, the last step of the toxic process.