• Title/Summary/Keyword: Pseudomonas stutzeri

Search Result 44, Processing Time 0.02 seconds

Increased Antifungal Activity with Genetic Development of Antagonistic Pseudomonas stutzeri YPL-1 against Fusariym solani (식물근부균 Fusarium Solani에 길항하는 생물방제균 Pseudomonas stutzeri YPL-1의 유전공학적 개발)

  • 임호성;김상달
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.4
    • /
    • pp.437-441
    • /
    • 1990
  • For the genetic development of more powerful antagonistic Pseudomom - YPL-1 as a biocontxol agent against soilborne plant pathogenic Fuaarium solani causing root rot of many important crops, mutants improving the productivity of chitinase were obtained by mutation with UV radiation or NTG treatment, P. stutzeri YPL-M26 (UV mutant) and P. stutzeri YPL-MI78 (NTG mutant) could improve the productivity of chitinase by 2.5 and 2.0 times, and its antifungal activity by 1.7 and 1.5 times, respectively. The antifungal mechanism of P. stutzeri YPL-M26 was caused by lysis of the fungal cell wall by hydrolytic enzymes such as chitinase. The antifungal activity of crude chitinase of P. stutzeri YPLM26 on the mycelial growth of F. solani was observed to be much higher than that of the original strain. The enzymes produced by P. stutzeri YPL-M26 were the same as the original strain in enzymatic properties such as optimal pH and temperature.

  • PDF

Antifungal Mechanism of Pseudomonas stutzeri YPL-l for Biocontrol of Fusarium solani causing Plant Root Rot (식물근부균 Fusarium solani에 대한 Pseudomonas stutzeri YPL-1의 생물학적 방제기작)

  • 임호성;김상달
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.1
    • /
    • pp.81-88
    • /
    • 1990
  • For the selection of powerful antagonistic bacterium for biological control of soilborne Fusarium solani causing root rot of many important crops, the best YPL-1 strain was selected among 300 strains of bacteria isolated from rhizosphere in ginseng root rot-suppressive soil. The strain was identified to be a species to Pseudomonas stutzeri. With in vitro fungal inhibition tests, antagonistic substance of P. stutzeri YPL-1 against F. solani was presumed to be heat unstable, macromolecular substances such as protein. Also, it was shown that antifungal activity of P. stutzeri YPL-1 increased in proportion to its chitinase production. P. stutzeri YPL-M122 (chi-, lam -) which was deprived of the productivity of chitinase and laminarinase by NTG mutagenesis had lost antifungal activity, completely. And P. stutzeri YPL-MI53 (chi-) had only 4.1% of its antifungal activity. P. stutzeri YPL-1 was not able to produce any extracellular siderophore in iron-deficent minimal medium. It is confident that the antifungal mechanism of P. stutzeri YPL-1 for biocontrol of F. solani depends on lysis rather than antibiosis :the mechanism of lysis appears to involve enzymatic degradation of the cell will components of F. solani by hydrolytic enzymes of more chitinase and less laminarinase.

  • PDF

Purification and Properties of .$\beta$-1, 3-Glucanase from Pseudomonas stutzeri KF13 (Pseudomonas-stutzeri KF13의 ..$\beta$-1, 3-Glucanase 정제 및 성질)

  • 방광웅;송형익;김재근;유대식;정기택
    • Korean Journal of Microbiology
    • /
    • v.25 no.1
    • /
    • pp.1-8
    • /
    • 1987
  • An extracellular $\beta$-1, 3-glucanase from Pseudomonas stutzeri KF 13 was purified about 390 with 26% recovery. The purified enzyme revealed a single band by polyacrylamide gel electrophoresis and SDS-polyacrylamide gel electrophoresis. The enzyme was stable in a pH 6.0 to 9.0, and relatively thermostable. The optimal pH and temperature on the enzyme activity were found to be 5.8 and 45.deg.C, respectively. The activation energy was calculated to be 16,130 cal per mole. The Km value for laminarin was found to be 3ng per ml and the molecular weight was determined to be 28,000 by gel filtration and 26,000 daltons by SDS-acrylamide gel electrophoresis. The enzyme was inhibited by 1.0mM of $Hg^{2+}$, and strongly inhibited by 1.0mM of p-chloromercuribenzoic acid.

  • PDF

The Production and Enzymatic Properties of Extracellular Chitinase from Pseudomonas stutzeri YPL-1, as a Biocontrol Agent

  • Lim, Ho-Seong;Kim, Sang-Dal
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.2
    • /
    • pp.134-140
    • /
    • 1994
  • An antagonistic bacterium Pseudomonas stutzeri YPL-1 liberated extracellular chitinase and $\beta$-1,3-glucanase which are key enzymes in the decomposition of fungal hyphal walls. The lytic enzymes caused abnormal swelling and retreating at the hyphal tips of plant pathogenic fungus Fusarium solani in a dual culture. Scanning electron microscopy revealed the hyphal degradation of F. solani in the regions interacting with P. stutzeri YPL-1. The production of chitinase and properties of a crude preparation of the enzyme from P. stutzeri YPL-1 were investigated. Peak of the chitinase activity was detected after 4 hr of cultivation. The enzyme had optimum temperature and pH of 50$^{\circ}C$ and pH 5.3, respectively. The enzyme was stable in the pH range of 3.5 to 6.0 up to 50$^{\circ}C$. The enzyme was significantly inhibited by metal compounds such as $HgCl_2$, but was stimulated by $CoCl_2$. P. stutzeri YPL-1 produced high levels of the enzyme after 84 hr of incubation. Among the tested carbon sources, chitin was the most effective for the enzyme production, at the concentration level of 3%. As a source of nitrogen, peptone was the best for the enzyme production, at the concentration level of 4%. The maximum amount of enzyme was produced by cultivating the bacterium at a medium of initial pH 6.8.

  • PDF

Studies on the Exo-maltotetraohydrolase of Pseudomonas stutzeri IAM 12097 -Part I. Purification of Exo-maltotetraohydrolase- (Pseudomonas stutzeri IAM 12097의 Exo-maltotetraohydrolase에 관한 연구(硏究) -제일보(第一報). Exo-maltotetraohydrolase의 정제(精製)-)

  • Lee, Mi-Ja;Chung, Man-Jae
    • Applied Biological Chemistry
    • /
    • v.27 no.2
    • /
    • pp.73-78
    • /
    • 1984
  • The optimum culture time and initial pH, for the production of exo-maltotetraohydrolase from Pseudomonas stutzeri IAM 12097, in the trypticase medium were 36 hrs and pH 6.3, respectively. Exo-maltotetraohydrolase was purified by $(NH_4)_{2}SO_4$ and two times of column chromatography on DEAE-cellulose. Specific activity of the purified enzyme was 108.6U/mg protein and yield of the enzyme activity was 9.4%. The purified enzyme showed a single band on polyacrylamide gel electrophoresis and SDS-polyacrylamide gel electrophoresis.

  • PDF

The role and characterization of .betha.-1, 3-glucanase in biocontrol of fusarium solani by pseudomonas stutzeri YPL-1

  • Lim, Ho-Seong;KiM, Sang-Dal
    • Journal of Microbiology
    • /
    • v.33 no.4
    • /
    • pp.295-301
    • /
    • 1995
  • An antifungal Pseudomonas stutzeri YPL-1 produced extracellular chitinase and .betha.-1, 3-glucanase that were key enzymes in the decomposition of fungal hyphal walls. These lytic extracellular enzymes markedly inhibited mycelial growth of the phytopathogenic fungus Fusarium solani. A chitinase from P. stutzeri YPL-1 inhibited fungal mycelial growth by 87%, whereas a .betha.-1, 3-glucanase from the bacterium inhibited growth by 53%. Furthermore, co-operative action of the enzymes synergistically inhibited 95% of the fungal growth. The lytic enzymes caused absnormal swelling and retreating on the fungal hyphal walls in a dual cultures. Scanning electron microscopy clearly showed hyphal degradation of F. solani in the regions interacting with P. stutzeri YPL-1. In an in vivo pot test, P. stutzeri YPL-1 proved to have biocontrol ability as a powerful agent in controlling plant disease. Planting of kidney bean (Phaseolus vulgaris L.) seedlings with the bacterial suspension in F. solani-infested soil significantly suppressed the development of fusarial root-rot. The characteristics of a crude preparation of .betha.-1, 3-glucanase produced from P. stutzeri YPL-1 were investigated. The bacterium detected after 2 hr of incubation. The enzyme had optimum temperature and pH of 40.deg.C and pH 5.5, respectively. The enzyme was stable in the pH range of 4.5 to 7.0 and at temperatures below 40.deg.C, with a half-life of 40 min at 60.deg.C.

  • PDF

Isolation of .betha.-1, 3-glucanase producing strain and cultural conditions of its enzyme production (.betha.-1, 3-glucanase 생성균의 분리 및 효소 생성 조건)

  • 정기택;방광웅;송형익;김재근;유대식
    • Korean Journal of Microbiology
    • /
    • v.24 no.3
    • /
    • pp.295-301
    • /
    • 1986
  • The bacteria, which were capable of producing ${\beta}-1$, 3-glucanase inducibly by utilizing cell wall of Aspergillus fumigatus as a sole carbon source, were isolated from soil in the campus of Kyungpook National University. Among them, the strain which produced the enzyme excellently was selected and identified to be Pseudomonas stutzeri KF 13 by morphological, cultural and physiological examination. The optimal conditions for the enzyme production from Pseudomonas stutzeri KF 13 were investigated. the enzyme production was reached maximum state shen the broth cultured for 72hr at $30^{\circ}C$. And the enzyme showed the highest activity in the medium containing 3.5% cell wall as an inducer, 15% yeast autolysate as a nitrogen source and 0.05% $MnSO_4$ at pH 7.5.

  • PDF

Transformation of Antagonistic Pseudomonas stutzeri YPL-1 against Root Rotting Fungi Fusarium solani by Plasmid DNA (생물방제균 Pseudomonas stutzeri YPL-1의 형질전환 조건)

  • 김용수;김상달
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.5
    • /
    • pp.454-459
    • /
    • 1990
  • For the genetic multipurpose of antagonistic abilities of Pseudomom etutzeri YPL-1 aganist Fusarium solani causing root rot of many important crops by genetic engineering, optimal conditions for transformation of P-stutzeri YPL-1 by pKT230 were investigated. Maxium frequency of the transformation was achieved when cells were harvested at early exponential growth phase. The highest transformation efficiency was obtained when the competent cells were exposed to chilled transformation buffer containing 20 mM RbCI, 100 mM $CaCl_2$ and added l${\mu}g$/ml of plasmid DNA. The pH optimum for transformation was 6.5. When the bacterial cells that were incubated during 60 minutes for the competence were brought in contact with plasmid DNA, the transformations were obtained in the best frequency. It was formed that transformation frequency was 2 ~$6 \times 10^{-6}$ under the optimal conditions.

  • PDF

High-Frequency Targeted Mutagenesis in Pseudomonas stutzeri Using a Vector-Free Allele-Exchange Protocol

  • Gomaa, Ahmed E.;Deng, Zhiping;Yang, Zhimin;Shang, Liguo;Zhan, Yuhua;Lu, Wei;Lin, Min;Yan, Yongliang
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.2
    • /
    • pp.335-341
    • /
    • 2017
  • The complexity of the bacterial recombination system is a barrier for the construction of bacterial mutants for the further functional investigation of specific genes. Several protocols have been developed to inactivate genes from the genus Pseudomonas. Those protocols are complicated and time-consuming and mostly do not enable easy construction of multiple knock-ins/outs. The current study describes a single and double crossover-recombination system using an optimized vector-free allele-exchange protocol for gene disruption and gene replacement in a single species of the family Pseudomonadaceae. The protocol is based on self-ligation (circularization) for the DNA cassette which has been obtained by overlapping polymerase chain reaction (Fusion-PCR), and carries an antibiotic resistance cassette flanked by homologous internal regions of the target locus. To establish the reproducibility of the approach, three different chromosomal genes (ncRNA31, rpoN, rpoS) were knocked-out from the root-associative bacterium Pseudomonas stutzeri A1501. The results showed that the P. stutzeri A1501 mutants, which are free of any plasmid backbone, could be obtained via a single or double crossover recombination. In order to optimize this protocol, three key factors that were found to have great effect on the efficiency of the homologous recombination were further investigated. Moreover, the modified protocol does not require further cloning steps, and it enables the construction of multiple gene knock-in/out mutants sequentially. This work provides a simple and rapid mutagenesis strategy for genome editing in P. stutzeri, which may also be applicable for other gram-negative bacteria.

Isolation and Nitrate Reduction Characteristics of Aerobic Denitrifier Pseudomonas sp. DN-9 (호기성 탈질균 Pseudomonas sp. DN-9의 분리 및 질산염 환원 특성)

  • Cho Sun-Ja;Jung Yong-Ju;Lee Sang-Joon
    • Journal of Environmental Science International
    • /
    • v.14 no.10
    • /
    • pp.955-963
    • /
    • 2005
  • From sludge of S municipal wastewater treatment plant in Busan, Korea, we isolated the denitrifier DN-9 which showed the ability of denitrification under aerobic conditionby the color change and gas formation in liquid culture with Giltay medium. The isolated strain was identified as Pseudomonas sp. DN-9 on the basis of the morphological, physiological, biochemical and nucleotide sequence analysis of l6S rRNA. The isolated strain, Pseudomonas sp. DN-9, has cytochrome $cd_1$, nirS of nitrite reductase. By the co-existance of additional ammonium and nitrate ion, the strain was not affected largely on growth in SL series broth. It seemed the result of denitrification. Although Pseudomonas sp. DN-9 has a good nitrate reduction activity under aerobic condition, the activity is less than Pseudomonas stutzeri in same cultivation condition. However, Escherichia coli had little the activity of aerobic denitrification and Pseudomonas putida showed lower activity of aerobic denitrification than Pseudomonas sp. DN-9 and Pseudomonas stutzeri in this study.