• Title/Summary/Keyword: Pseudomonas sp. LG2

Search Result 5, Processing Time 0.02 seconds

Isolation of Marine Bacteria Killing Red Tide Microalgae II. Isolation and Algicidal Properties of Pseudomonas sp. LG-2 Possessing Killing Activity for Dinoflagellate, Prorocentrum micans (적조생물 살조세균 탐색 II. 적조생물 Prorocentrum micans 살조세균 Pseudomonas sp. LG-2의 분리와 살조특성)

  • LEE Won-Jae;PARK Young-Tae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.6
    • /
    • pp.852-858
    • /
    • 1998
  • We have isolated a bacterial strain that tends to kill P. micans from the mixed culture of p. minns plus seawater filtrate (poresize, 0.8 $\mu$m) collected at Masan bay in July 1996, in which the mixed culture grown in the f/2 medium. According to the experimental results of the isolated bacterium such as fatty acids analysis, morphological and biochemical characteristic tests, the strain was supposed to be a Pseudomonas and then it was named as Pseudomonas sp. LG-2. The killing effect of Pseudomonas sp. LG-2 against P. micans was proportionally increased with the concentrations of culture filtrate (pore size, 0.8 $\mu$m) is well as with the number of bacterium inoculated. In the mixed culture inoculated with $1.3\times10^6$ cells/ml of Pseudomonas sp. LG-2, the number of P. micans (2,000 cells/ml) was gradually decreased and then killed below 100 cells/ml within 7 days. In addition, the culture filtrate with $30\%$ of final concentration revealed a significant killing effect against P. micans around 3 days after culture. In the relationship between killing effects and growth stage of Pseudomonas sp. LG-2, the culture filtrate at lag phase has little effects on P. micans. In constant, the culture filtrate at mid-log phase showed the killing effect by decreasing P. micans to 112 in number within 5 days. In particular, the culture filtrate at stationary phase showed a significant killing effect against P. micans in which the majority of it was killed after 3 day culture. The species specificity of killing effects of Pseudomonas sp. LG-2 against 5 species of dinoflagellate was only found in P. micans and Scrippsiella trochoidea.

  • PDF

Partial Characterization and Induction of Ferulic Acid Esterase and Xylanase from Pseudomonas sp. LG2 (Pseudomonas sp. LG2의 Ferulic acid esterase 및 Xylanase 유도와 부분적 특성)

  • Kim, Yong-Gyun;Lee, Sang-Mong;Park, Hyun-Chul;Kim, Keun-Ki;Son, Hong-Joo
    • Journal of Life Science
    • /
    • v.17 no.4 s.84
    • /
    • pp.568-574
    • /
    • 2007
  • Lignin degrading bacterium Pseudomonas sp. LG2 was able to degrade lignin substrate to a lot of APPL compound. APPL compound was detected in culture supernatants from Pseudomonas sp. LG2 grown with BSC(brewer's spent grain). FAE(ferulic acid esterase) and xylanase are induced from Pseudomonas sp. LG2 in the presence of carbon sources such as oat spelt xylan, HBSG I, II(hydrolyzed brewer's spent grain I, II) and AFBSG(autoclaved fraction from brewer's spent grain). However, xylanase and FAE are not induced by growth of Pseudomonas sp. LG2 on xylose and arabinose. Pseudomonas sp. LG2 is grown on medium containing oat spelt xylan, HBSG I, II and AFBSG and the induction of FAE and xylanase activities of extracellular proteins determined during 14 days. Maximum level of xylanase activity(5.3 U/mg) found at 6 days in culture contained oat spelt xylan as carbon source, whereas maximum level of FAE activity(15.4 mU/mg) was found at 8 days in culture contained AFBSG as carbon source. Most ferulic acid was released in culture supernatants when Pseudomonas sp. LG2 grown on oat spelt xylan, HBSG I, II and AFBSG. FAE of extracellular enzymes was also specific activity on methyl ferulic acid, methyl caffeic acid and methyl p-coumaric acid respectively, but not methyl sinapinic acid, methyl vanillic acid and methyl gallic acid.

Isolation of a Lignolytic Bacterium for Degradation and Utilization of Lignocellulose (Lignocellulose의 분해 및 이용을 위한 Lignin 분해 세균의 분리)

  • 김용균;김한수;김근기;손홍주;이영근
    • Journal of Life Science
    • /
    • v.12 no.4
    • /
    • pp.392-398
    • /
    • 2002
  • 38 strains were isolated in order to utilize lignin degrading ability from soil and compost. A organism having high lignin degrading ability of the isolated strains determined morphologcal and biochemical characteristics. Enrichment technique yielded a lignin degrading bacterium characterized as Pseudomonas sp. LC-2. This strain was able to degrade lignin which are the true representatives of native lignin and transform lignin to a lot of aromatic compounds as HPLC analysis of culture. By polyacrylamide gel analysis, it was determined that peroxidase consisted of three enzymes, with only one, the lignin peroxidase having high activity.

Isolation of Marine Bacteria Killing Red Tide Microalgae -IV. Characteristics of Algicidal Substances, Produced from Micrococcus sp. LG-5 and the Effects on Marine Organisms- (적조생물 살조세균 탐색 -IV. 살조세균 Micrococcus sp. LG-5가 생산하는 살조물질의 특성과 해양생물에 미치는 영향-)

  • JEONG Seong-Youn;PARK Young-Tae;KIM Mu-Chan;CHOI Seok-Cheol;SEONG Hee-Kyung;KIM Jai-Young;KIM Tae-Un;LEE Won-Jae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.33 no.4
    • /
    • pp.339-347
    • /
    • 2000
  • An algicidal bacterium, Micrococcus sp. LG-5 against the harmful dinoflagellate, Cochlodinium polykrikoides was isolated. The optimal conditions for the highest algicidal activity of bacterial culture filtrate showed in the range of $20{\~}30^{\circ}C$, at pH 7.0 and $3.0{\%}$ of NaCl concentration. In addition, $IC_(50)(mean of 50{\%} inhibitory concentration)$ of the culture filtrate against C. polykrikoides after incubation of 5 days was $0.482{\%}$. To investigate heat and pH stability of the culture filtrate of Micrococcus sp. LG-5, the culture filtrate ($pore size, 0.1 {\mu}m$) was heated to $121^{\circ}C for 15 min$ and adjusted pH from 2.0 to 10.0. There were no significant changes in algicidal activity by heat treatment and the pH change between pH from 5.0 to 10.0. The algicidal substances produced from Micrococcus sp. LG-5 were mainly detected in the fraction of $10,000{\~}1,000$ MWCO (molecular weight cut-off). The culture filtrate of Micrococous sp. LG-5 showed antimicrobial activity against Enterococcus faecalis, Escheiichia coli, Uebsiella pneunioniae and Vibrio altinolyticus, but did not show against Pseudomonas aeminosa, P. Buorescens, Salmonella typhi, Staphylococcus aureus, V. cholerae and V parahaemolyicus. The culture filtrate of Micrococcus sp. LG-5 was examined against 16 phytoplankton species and showed the algicidal activity against Ajexandzium tuarense, Eutreptiella Drnnastin, Gymnodinium catenatum, G. mikimotoi, G. sanguineum, eyodinium impuaicum, Heterocapsa triquetra, Heterosipa akashiwo, Prorocentrum micans and Pyraminonas sp.. However no algicidal effects of Micrococcus sp. LG-5 were observed against Chlamydomonas sp., Cylindrotheoa closterium, P. mininum, P. triestimum, Pseudonieschia sp. and Sczipuiella trochoidea. On the other hand, algicidal activity on the tested marinelivefood was not detected except for Isochrysis galbana. In addition, physiological responses of cultured olive flounder (Paralichthys oliraceus) exposed to $1 and 10{\%}$ of the culture filtrate of Micrococcus sp. LG-5 were measured. There were no clear changes in AST, GGT, creatinine, urea, total cholesterol, total protein, albumine, $Mg^(+2), Ca^(+2), Na^+, K^+, and Cl^-$. These results indicate that olive flounders were not affected when they were exposed to the culture filtrate of Micrococcus sp. LG-5.

  • PDF

Reuse of Yuza Seed By-product for Production of Aphicidal Rhamnolipid by Pseudomonas sp. EP-3 (Pseudomonas sp. EP-3 rhamnolipid 에 의한 진딧물 살충성 생산을 위한 유자씨앗 부산물의 재활용)

  • Lim, Da Jung;Park, Tae Hyun;Yang, Si Young;Kim, Jin Cheol;Kim, In Seon
    • Korean Journal of Environmental Agriculture
    • /
    • v.36 no.1
    • /
    • pp.36-42
    • /
    • 2017
  • BACKGROUND: Yuza seed by-product has been produced in a large amount from the agricultural farms in the southern area of Korea. It has been mostly abandoned after commercial process for the production of juice, jam and tea. The study on the reuse of the yuza seed by-product has received much attention as a bio-resource material for the production of active compound in agriculture. METHODS AND RESULTS: Insecticidal rhamnolipid-producing Pseudomonas sp. EP-3 was grown in mineral salt media with the yuza seed by-product at 2, 20, 50 and 100 g/L. The growth of EP-3 was accompanied by a increase in insecticidal activity against green peach aphid. The highest insecticidal activity was observed when EP-3 was grown in the medium containing 50 g/L of the seed sample, producing approximately 996 mg/L of rhamnolipid at 96 h. Palmitic acid, stearic acid, oleic acid and linoleic acid were determined as the major fatty acids of the seed sample. The EP-3 cultures grown on the fatty acid mixture extracted from the seed sample showed a aphid mortality similar to that of cultures grown on the seed sample. The EP-3 cultures grown on 50 g/L of the seed sample showed aphid mortality more than 90% under greenhouse conditions. CONCLUSION: This study suggested that the yuza seed by-product may be used as a renewable material for microbial production of rhamnolipid against green peach aphid.