• Title/Summary/Keyword: Pseudomonas putida BJ10

Search Result 3, Processing Time 0.021 seconds

The Characteristics of Tetrachloroethylene (PCE) Degradation by Pseudomonas putida BJ10 (Pseudomonas putida BJ10의 Tetrachloroethylene (PCE) 분해 특성)

  • Choi, Myung-Hoon;Kim, Jai-Soo;Lee, Sang-Seob
    • Korean Journal of Microbiology
    • /
    • v.44 no.4
    • /
    • pp.311-316
    • /
    • 2008
  • In this study, biological PCE degradation by using a BTEX degrading bacterium, named BJ10, under aerobic conditions in the presence of toluene was examined. According to morphological, physiological characteristics, 16S rDNA sequencing and fatty acid analysis, BJ10 was classified as Pseudomonas putida. As a result of biological PCE degradation at low PCE concentrations (5 mg/L), PCE removal efficiency by P. putida BJ10 was 52.8% for 10 days, and PCE removal rate was 5.9 nmol/hr (toluene concentration 50 mg/L, initial cell density 1.0 g (wet weight)/L, temperature 30, pH 7 and DO $3.0{\sim}4.2\;mg/L$. At high PCE concentration (100 mg/L), PCE removal efficiency by P. putida BJ10 was 20.3% for 10 days, and PCE removal rate was 46.0 nmol/hr under the same conditions. The effects of various toluene concentration (5, 25, 50, 100, 200 mg/L) on PCE degradation were examined under the same incubation conditions. The highest PCE removal efficiency of PCE was 57.0% in the initial PCE concentration of 10 mg/L in the presence of 200 mg/L toluene for 10 days. Furthermore, the additional injection of 5.5 mg/L PCE (total 7.6 mg/L) made 63.0% degradation for 8 days in the presence of 50 mg/L toluene under the same conditions. Its removal rate was 13.5 nmol/hr, which was better than the initial removal rate (8.1 nmol/hr).

The Investigation of Biodegradation Characteristics of Xylene by Soil Inhabited Microorganisms (토양 서식 미생물을 이용한 자일렌(xylene) 분해특성 조사)

  • Choi, Phil-Kweon;Heo, Pyeung;Lee, Sang-Seob
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.6
    • /
    • pp.389-393
    • /
    • 2013
  • The purpose of this study is to investigate the biodegradation characteristics of the xylene by BTEX-degrading bacteria, Pseudomonas putida BJ10, isolated from oil-contaminated soil and bio-degradation pathway of the xylene. The removal efficiencies of o, m, p-xylene in mineral salts medium (MSM) by P. putida BJ10 were 94, 90 and 98%, respectively for 24 hours. It shows clear difference compared with the control groups which were below 3%. The removal efficiencies of BTEX by P. putida BJ10 in gasoline-contaminated soil were 66% for 9 days. They were clearly distinguished from the control groups (control and sterilized soil) which were 32 and 8%. 3-methylcatechol and o-toluic acid were detected after 6 and 24 hours during the o-xylene biodegradation pathway. Therefore, we confirmed o-toluic acid as the final metabolite. And intermediate-products were somewhat different with previously published studies of the transformation pathway from o-xylene to 3-methylcatechol.

In-situ Bioremediation of Total Petroleum Hydrocarbons-Contaminated Soil by Pseudomonas Species (토양 내 TPH(Total Petroleum Hydrocarbons)의 생물학적 분해 연구)

  • Kim, Jee-Young;Lee, Sang-Seob
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.2
    • /
    • pp.161-167
    • /
    • 2011
  • We previously showed that five strains belonging to Pseudomonas could remove TPH (Total Petroleum Hydrocarbons) efficiently when they are applied to TPH-contaminated soil. We optimized the bioremediation condition using different hydrocarbons and nutrients conditions to improve the efficiency. We setup lab-scale column bioreactor to monitor TPH and diesel removal efficiency. When we applied five Pseudomonas sp. mixtures to 25,000 $mg{\cdot}kg^{-1}$ TPH-contaminated soil (diesel 10,000 $mg{\cdot}kg^{-1}$, kerosene 10,000 $mg{\cdot}kg^{-1}$, gasoline 5,000 $mg{\cdot}kg^{-1}$) with the optimum condition, 76.3% of TPH removal efficiency was shown for 25 days. Meanwhile, in the application of five Pseudomonas sp. mixtures to 20,000 $mg{\cdot}kg^{-1}$ diesel-contaminated soil with the optimum condition, 99.2% of diesel removal efficiency was shown for 40 days. In the application to lab-scale bioreactor with five high efficiency bacteria, 88.5% of TPH removal efficiency was shown for 45 days. Based on the results from this study, we confirmed that this mixed Pseudomonas sp. consortium might improve the bioremediation of TPH in contaminated soil, the efficacy can be controlled by improving the nutrients. We also confirmed that the nutrients and oxygen for biodegradation of TPH could contribute on the management and control of applications of these strains for the study of bioremediation of TPH-contaminated soil.