• 제목/요약/키워드: Pseudomonas isolate

검색결과 132건 처리시간 0.029초

Major Fe-Superoxide Dismutase (FeSOD) Activity in Pseudomonas putida is Essential for Survival Under Conditions of Oxidative Stress During Microbial Challenge and Nutrient Limitation

  • Kim, Young-Cheol;Kim, Cheol-Soo;Cho, Baik-Ho;Anderson, Anne-J.
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권4호
    • /
    • pp.859-862
    • /
    • 2004
  • An isolate of Pseudomonas putida has been found to aggressively colonize root tips and induce plant resistance to Fusarium wilt. However, P. putida mutants lacking Fe-superoxide dismutase (SOD) or both FeSOD and MnSOD activities are less competitive in root tip colonization. In the current study, the growth of an FeSOD mutant was found to be more sensitive than that of the wild-type or a MnSOD mutant to oxidative stress imposed by paraquat treatment and culturing with the soil fungus Talaromyces flavus, which generates reactive oxygen species. Also, the loss of culturability with an aging stationary-phase culture was greater for a double SOD mutant than an FeSOD mutant, while no reduction in culturability was observed with the wild-type and a MnSOD mutant under the same protracted stationary-phase conditions. Accordingly, it was concluded that FeSOD activity is the major form of SOD in P. putida and plays an essential role in survival under stress conditions when increased oxidative stress is encountered.

Terephthalic Acid 분해 세균의 분리 및 특성 (Isolation and Characterization of Terephthalic Acid-degrading Bacteria)

  • 김재화;이창호;우철주;주길재;서승교;박희동
    • 한국미생물·생명공학회지
    • /
    • 제27권2호
    • /
    • pp.118-123
    • /
    • 1999
  • A bacterial strain, designated T116, degrading terephthalic acid (TPA) was isolated from the soil around Taegu industrial area into which dye works wastewater flow. The isolate was identified as pseudomonas sp. based on its morphological and physiological characteristics. Degradation of TPA by the strain T116 was confirmed with UV scanning and HPLC. About 90% and 98% of TPA were degraded after 36 and 60 hours, respectively, during the culture in a liquid medium containing 0.1% TPA. Addition of KH2PO4 at a final concentration of 100ppm enhanced the chemical oxygen demand (COD) removal rate about 50% from dye works wastewater by Pseudomonas sp. T116. Optimum pH and temperature for COD reduction from wastewater were 7.0 and 3$0^{\circ}C$, respectively. The bacterium was applied to the continuous culture for the treatment of dye works wastewater whose TPA concentration and CODMn were 2,200ppm and 1,620ppm, respectively. It was observed that 90-95% of COD was eliminated after 4 days culture in the continuous culture with a retention time of 37 or 47 hours.

  • PDF

Purification of a Pore-forming Peptide Toxin, Tolaasin, Produced by Pseudomonas tolaasii 6264

  • Cho, Kwang-Hyun;Kim, Sung-Tae;Kim, Young-Kee
    • BMB Reports
    • /
    • 제40권1호
    • /
    • pp.113-118
    • /
    • 2007
  • Tolaasin, a pore-forming peptide toxin, is produced by Pseudomonas tolaasii and causes brown blotch disease of the cultivated mushrooms. P. tolaasii 6264 was isolated from the oyster mushroom damaged by the disease in Korean. In order to isolate tolaasin molecules, the supernatant of bacterial culture was harvested at the stationary phase of growth. Tolaasin was prepared by ammonium sulfate precipitation and three steps of chromatograpies, including a gel permeation and two ion exchange chromatographies. Specific hemolytic activity of tolaasin was increased from 1.7 to 162.0 HU $mg^{-1}$ protein, a 98-fold increase, and the purification yield was 16.3%. Tolaasin preparation obtained at each purification step was analyzed by HPLC and SDS-PAGE. Two major peptides were detected from all chromatographic preparations. Their molecular masses were analyzed by MALDI-TOF mass spectrometry and they were identified as tolaasin I and tolaasin II. These results demonstrate that the method used in this study is simple, time-saving, and successful for the preparation of tolaasin.

화상감염 소아환자에서 분리된 주요 균종에 대한 항생제의 내성률 (Antimicrobial Resistance of Clinically Important Bacteria Isolated from Burn Wound Infections in Children)

  • 강주연;신혜순
    • 한국임상약학회지
    • /
    • 제23권1호
    • /
    • pp.20-25
    • /
    • 2013
  • Background & Objectives: Burn injury mortality and septic complication are frequent and well-known in burned pediatric patients. The overuse of antibiotics is the base for development of wound infection by resistant microorganisms as well as opportunist agents. Methods: We have carried out a study of the bacterial profile and antimicrobial resistance clinically important bacteria isolated from burn wound infections in children patients. The most common isolate from burn wound cultures was Pseudomonas aeruginosa (26.8%), followed by Staphylococcus aureus (25.4%), Acinetobacter baumannii (12.7%), coagulase negative staphylococcus (12.0%), Enterococcus faecium (7.7%), Escherichia coli (4.9%), Enterococcus faecalis (3.7%), Burkholderia cepacia (3.0%), Enterobacter cloacae (2.3%) and Klebsiella pneumonia (2.3%). Colistin was very significantly effective drug in gram negative organism, such as Pseudomonas aeruginosa and Acinetobacter baumannii. Results & Conclusion: The resistance rates were 65% and 98% to piperacillin, 63% and 97% to ceftazidime, 28% and 50% to levofloxacin. The most effective antibiotic in gram positive organism, such as Staphylococcus aureus, coagulase negative staphylococcus were moxifloxacin. The resistance rates were 83% and 64% to ciprofloxacin, 80% and 17% to clindamycin.

Catabolic Degradation of 4-Chlorobiphenyl by Pseudomonas sp. DJ-12 via Consecutive Reaction of meta-Cleavage and Hydrolytic Dechlorination

  • Chae, Jong-Chan;Kim, Eunheui;Park, Sang-Ho;Kim, Chi-Kyung
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제5권6호
    • /
    • pp.449-455
    • /
    • 2000
  • Pseudomonas sp. strain DJ-12 is a bacterial isolate capable of degrading 4-chlorobiphenyl (4CBP) as a carbon and energy source. The catabolic degradation of 4CBP by the strain DJ-12 was studied along with the genetic organization of the genes responsible for the crucial steps of the catabolic degradation. The catabolic pathway was characterized as being conducted by consecutive reactions of the meta-cleavage of 4CBP, hydrolytic dechlorination of 4-chlorobenzoate (4CBA), hydroxylation of 4-hydroxybenzoate, and meta-cleavage of protocatechuate. The pcbC gene responsible for the meta-cleavage of 4CBP only showed a 30 to 40% homology in its deduced amino acid sequence compared to those of the corresponding genes from other strains. The amino acid sequence of 4CBA-CoA dechlorinase showed an 86% homology with that of Pseudomonas sp. CBS3, yet only a 50% homology with that of Arthrobacter spp. However, the fcb genes for the hydrolytic dechlorination of 4CBA in Pseudomonas sp. DJ-12 showed an uniquely different organization from those of CBS3 and other reported strains. Accordingly, these results indicate that strain DJ-12 can degrade 4CBA completely via meta-cleavage and hydrolytic dechlorination using enzymes that are uniquely different in their amino acid sequences from those of other bacterial strains with the same degradation activities.

  • PDF

Exo-xylanase 생산균의 분리 및 동정 (Isolation and Identification of Exo-xylanase Producing Microorganism)

  • 하재석;이영남;임재윤
    • 한국미생물·생명공학회지
    • /
    • 제20권1호
    • /
    • pp.14-19
    • /
    • 1992
  • 부패한 나무, 퇴비, 제지공장의 폐지 및 폐수 등으로부터 분리한 300여 종류의 섬유소 분해균 중 xylanase 활성이 다른 균주에 비해 비교적 높았던 33번 균주를 균의 형태학적, 생화학적 특성과, 균체 지방산 조성에 의하여 Pseudomonas sp.로 동정하였다. Xylanase 활성의 최적 온도외 최적 pH는 각각 $50^{\circ}C$와 5.5이었고, 효소의 안정성은 $45^{\circ}C$ 이하의 온도와 pH 5.0에서 7.0 사이에서 유지되었다. 이 균주가 생산하는 xylanase는 효소반응분해물의 paper chromatography에 의하여 주로 exo-type의 xylanase임이 밝혀졌다.

  • PDF

Characterization of Styrene Catabolic Genes of Pseudomonas putida SN1 and Construction of a Recombinant Escherichia coli Containing Styrene Monooxygenase Gene for the Production of (S)-Styrene Oxide

  • Park Mi-So;Bae Jong-Won;Han Ju-Hee;Lee Eun-Yeol;Lee Sun-Gu;Park Sung-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권7호
    • /
    • pp.1032-1040
    • /
    • 2006
  • Some Pseudomonas species can grow on styrene as a sole carbon and energy source. From the new isolate Pseudomonas putida SN1, the genes for styrene catabolism were cloned and sequenced. They were composed of four structural genes for styrene monooxygenase (styA and styB), styrene oxide isomerase (styC), and phenylacetaldehyde dehydrogenase (styD), along with two genes for the regulatory system (styS and styR). All the genes showed high DNA sequence (91% to 99%) and amino acid sequence (94% to 100%) similarities with the corresponding genes of the previously reported styrene-degrading Pseudomonas strains. A recombinant Escherichia coli to contain the styrene monooxygenase from the SN1 was constructed under the control of the T7 promoter for the production of enantiopure (S)-styrene oxide, which is an important chiral building block in organic synthesis. The recombinant E. coli could convert styrene into an enantiopure (S)-styrene oxide (ee >99%) when induced by IPTG The maximum activity was observed as 140 U/g cell, when induced with 1 mM IPTG at $15^{\circ}C$.

버섯 세균성회색무늬병균(Pseudomonas agarici)에 대한 Alcaligenes sp. HC12의 항균활성 (Antagonistic Effects of the Bacterium Alcaligenes sp. HC12 on Browning Disease Caused by Pseudomonas agarici)

  • 이찬중;문지원;정종천;공원식
    • 한국균학회지
    • /
    • 제44권3호
    • /
    • pp.171-175
    • /
    • 2016
  • Pseudomonas agarici에 의해 발생하는 세균성회색무늬병은 양송이 재배에서 문제가 되는 대표적인 병해이다. 본 연구에서는 세균성회색무늬병의 생물학적 방제법에 이용할 수 있는 길항미생물의 항균활성과 선발된 길항미생물에 대해 폿트 수준의 생물검정 실험을 실시하였다. 재배중인 양송이 배지에서 세균성회색무늬병 병원균을 강하게 억제하는 길항세균 HC12를 선발하였으며, 생리 생화학적 실험과 유전적 실험결과 HC12균주는 Alcaligenes sp.로 동정되었다. Alcaligenes sp. HC12를 양송이에 처리한 결과 63%의 방제효과를 보였다. 따라서 Alcaligenes sp. HC12가 양송이버섯 세균성회색무늬병 방제를 위해 합성농약을 대체할 수 있는 친환경 방제제가 될 수 있을 것으로 생각된다.

항생물질을 생산하는 Pseudomonas sp. BCNU 2001 균주의 특성 (Characterization of an Antimicrobial Substance-producing Pseudomonas sp. BCNU 2001)

  • 양욱희;최혜정;안철수;정영기;김동완;주우홍
    • 한국미생물·생명공학회지
    • /
    • 제38권3호
    • /
    • pp.255-262
    • /
    • 2010
  • 본 연구팀은 태백산 지역에서 토양 시료들을 채취하여 다양한 균주들을 분리 탐색하는 과정에서 BCNU 2001 균주를 분리하였다. 분리균주의 생화학적 특징과 16S 리보좀 RNA 유전자 염기서열 분석 결과, 분리균주가 Pseudomonas aeruginosa에 속함이 확인되었다. 분리균주 BCNU 2001의 상등액은 다양한 세균과 진균에 대해 항균활성이 있었으며 특히 분리균주 BCNU 2001는 Micrococcus luteus, Proteus mirabilis, Proteus vulgaris, 그리고 Aspergillus niger의 생육을 크게 저해할 수 있었으며, Micrococcus luteus, Proteus mirabilis, Proteus vulgaris, 그리고 Aspergillus niger에 대하여 각각 18.5mm, 19.0mm, 17.0mm 그리고 13.5mm 크기의 저해환을 나타내었다. 분리균주 BCNU 2001의 핵산 분획물과 디클로로메탄 분획물은 세균에 대해 높은 항균력을 보였으며 디클로로메탄 분획물과 에틸아세테이트 분획물은 진균에 대해 높은 항균력을 보였다. 또한 Pseudomonas sp. BCNU 2001 균주는 그람양성 세균, 그람음성 세균 그리고 진균을 포함한 다양한 미생물들에 대하여 항균력이 있는 항균 펩타이드를 가지고 있음이 확인되었다. 실험을 통하여 얻은 결과는 Pseudomonas sp. BCNU 2001 균주의 유용성에 대한 예비적인 기초를 제공한다.

Acinetobacter sp.1의 일산화탄소 산화효소의 특성 (Carbon Monoxide Dehydrogenase in Cell Extracts of an Acinetobacter Isolate)

  • 조진원;김영민
    • 미생물학회지
    • /
    • 제24권2호
    • /
    • pp.133-140
    • /
    • 1986
  • 일산화탄소를 이용하여 자가영양적으로 성장한 Acinetobacter sp. 1 의 세포추출액은 혐 기성 실험조건하에서 thionin, methylene blue, 2,6-dichlorophenol-indophenol둥올 일산화탄소의 산회를 위한 전자수용체로 사용할 수 있었으나 NAD, NADP, FAD, 또는 FMN등은 천자수용체로 이용하지 못하였다. 이 세균에 존재하는 일산화탄소 산화효소는 유도효소로 밝혀졌고, pH 7.5와 $60^{\circ}C$에서 최대의 활성을 나타내었다. 이 효소의 활성화에너지는 6.1kcal/mol (25.5 kJ/mol)이며 일산화탄소에 대한 Km값은 $154{\mu}M$로 밝혀졌다. 그리고 잘 알려진 몇가지 금속 chelat tIng agent와 2가의 양이온들은 이 효소의 활성에 거의 영향을 미치지 않았는데 $Cu^{2+}$ 이온만은 이 효소의 활성을 완전히 억제시켰다. 또한 이 효소는 포도당과 숙신산에 의해 활성이 저해되었으며, hydrogenase의 활성도 나타내었다. 그리고 Acinetobacter sp. 1의 일산화탄소 산화효소는 Pseudomonas carboxydohydrogena의 일산화탄소 산화효소와 연역학적인 연관성이 없는 것으로 나타났다.

  • PDF