• Title/Summary/Keyword: Pseudomonas D2

Search Result 200, Processing Time 0.029 seconds

Cloning and Sequence Analysis of the xyIL Gene Responsible for 4CBA-Dihydrodiol Dehydrogenase from Pseudomonas sp. S-47

  • 박동우;이상만;가종옥;김지경
    • Korean Journal of Microbiology
    • /
    • v.38 no.4
    • /
    • pp.275-275
    • /
    • 2002
  • Pseudomonas sp. S-47 is capable of catabolizing 4-chlorobenzoate (4CBA) as carbon and energy sources under aerobic conditions via the mesa-cleavage pathway. 4CBA-dioxygenase and 4CBA-dihydrodiol dehydrogenase (4CBA-DD) catalyzed the degradation af 4CBA to produce 4-chlorocatechol in the pathway. In this study, the xylL gene encoding 4CBA-DD was cloned from the chromosomal DNA of Pseudomonas sp. S-47 and its nucleotide sequence was analyzed. The xylL gene was found to be composed of 777 nucleotide pairs and to encode a polypeptide of 28 kDa with 258 amino acid residues. The deduced amino acid sequence of the dehydrogenase (XylL) from strain S-47 exhibited 98% and 60% homologies with these of the corresponding enzymes, Pseudomonas putida mt-2 (XyIL) and Acinetobacter calcoaceticus (BenD), respectively. However, the amino arid sequences show 30% or less homology with those of Pseudomonas putida (BnzE), Pseudomonas putida Fl (TodD), Pseudomonas pseudoalcaligenes KF707 (BphB), and Pseudomonas sp. C18 (NahB). Therefore, the 4CBA-dihydrodiol dehdrogenase of strain S-47 belongs to the group I dehydrogenase involved in the degradation of mono-aryls with a carboxyl group.

Pseudomonas sp. JH007에 의한 DL-2-Chloropropionic Acid로부터 D-Lactic Acid의 생산

  • 정자헌;황인균;방원기
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.3
    • /
    • pp.357-363
    • /
    • 1996
  • For the production of D-lactic acid from DL-2-chloropropionic acid, about 80 strains of bacteria capable of assimilating DL-2-chloropropionic acid as a sole carbon and energy source were isolated from the soil. JH-007 strain that showed the higest productivity of D-lactic acid and didn't produce L-lactic acid from DL-2-chloropropionic acid was selected from them and identified as Pseudomonas sp. The optimal conditions for the production of D-lactic acid from DL-2-chloropropionic acid were examined. The resting cells of JH-007 cultured in LB medium containing 3 g/l of DL-2-chloropropionic acid were used as an enzyme source. The reaction mixtures for the maximal production of D-lactic acid were consist of 10 g/l of resting cells and 3 g/l of DL-2-chloropropionic acid in 125 mM sodium carbonate buffer. The optimal pH for the reaction was 10.0 and the optimal temperature was 30$\circ$C. When 1 g/l of DL-2-chloropropionic acid was added intermittently to the reaction mixture under the above condition, 5.72 g/l of D-lactic acid was produced after incubation of 5 hrs. This amount of D-lactic acid corresponded to a 98.4% yields and the optical purity was 99.8%.

  • PDF

Cloning and Expression of pcbCD Genes in Escherichia coli from Pseudomonas sp. DJ-12 (Pseudomonas sp. DJ-12의 pcbCD 유전자의 클로닝과 Escherichia coli에서의 발현)

  • Kim, Chi-Kyung;Sung, Tae-Kyung;Nam, Jung-Hyun;Kim, Chang-Young;Lee, Jae-Koo
    • Korean Journal of Microbiology
    • /
    • v.32 no.1
    • /
    • pp.40-46
    • /
    • 1994
  • The pcb genes of Pseudomonas sp. DJ-12 coded for the catabolism of polychlorinated biphenyl (PCBs) and biphenyl. The products of the pcbCD genes were 2,3-dihydroxy-4'-chlorobiphenyl dioxygenase and meta-cleavage product (MCP) hydrolase, which acted on degradation of 2,3-dihydroxy-4'-chlorobiphenyl to 4-chlorobenzoate. The pcbCD genes were cloned in E. coli XLl-Blue, and then the pcbD gene was further subcloned. As a metabolite transformed from 2,3-dihydroxybiphenyl by the cloned cell of E coli CU103, benzoate was detected by the resting cell assay. The enzyme activities of 2,3-dihydroxybiphenyl dioxygease and MCP hydrolase produced in the cloned cells E. coli CU103 and CU105 were about 17 and 3 times higher than those of Pseudomonas sp. DJ-12, respectively.

  • PDF

Cloning and Expression in E. coli of the HOPDA Hydrolase Gene from Pseudomonas sp. P20

  • Lim, Jong Chul;Chae, Jong Chan;Kim Youngsoo;Kim, Hyong Bai;Kim Chi Kyung
    • Journal of Microbiology
    • /
    • v.34 no.4
    • /
    • pp.349-354
    • /
    • 1996
  • Pseudomonas sp. P20 is a natural isolate which is capable of degrading biphenyl and 4-chlorobiphenyl. From a clone of pCK1022 harboring pcbCD genes of Pseudomonas sp P20, a pcbD gene encoding 2-hydroxy-6-oxo-6-phenylhexa-2, 4-dienoic acid (HOPDA) hydrolase was subcloned in Escherichia coli XL-1-Blue by using pBluescript SK(+) vector. The 2.8-kb HindII fragment harboring the pcbD gene cloned in pCK 1024 had a single site for each of XhoI, SalI, BstXI, and XbaI restriction enzymes. Escherichia coli CK1024 had a single site for each of XhoI, SalI, BstXI, and XbaI restriction enzymes. Escherichia coli CK1024 carrying pCK0124 degraded HOPDA to benzoate and 2-hydroxypenta-2, 4-dienoate by HOPDA hydrolase encoded by pcbD gene as effectively as E coli CK 1022 HARBORING pcbCD genes.

  • PDF

Isolation of 2,4,5-Trichlorophenoxyacetic Acid-Degrading Bacteria (2,4,5-trichlorophenoxyacetic acid 를 분해하는 세균의 분리)

  • Park, Young-Doo;Eum, Jin-Seong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.1
    • /
    • pp.47-51
    • /
    • 2000
  • 2,4,5-trichlorophenoxyacetic acid (2,4,5-T)-degrading bacterial strains were isolated from rice field and field in suburbs of Taejon. Of the total 100 isolates, 19 strains were selected by fast growth on solid minimal media containing 2,4,5-T as a sole of carbon and energy, and they were identified to genus level. 11 strains were identified as Pseudomonas, 4 strains as Acinetobacter, 1 strains were as Alcaliagenes and 3 strains were not identified. Strains MU19 and MU92 which were identified as Pseudomonas were capable of degradation for 4 kinds of chlorinated aromatic hydrocarbons, 2,4-D, 2,4,5-T, MCPA and 3CB. Acinetobacter sp. MU38 showed the highest degradability in liquid minimal media at 48 hours after inoculation, and Pseudomonas spp. MU19. MU57, MU73, and MU92 were able to degrade carbon source at higher rates. As the results Acinetobacter sp. MU38 and Pseudomonas spp. MU19 and MU92 were capable of biodegradation for broad range of halogenated aromatic hydrocarbons, and had higher rates of degradation for 2,4,5-T.

  • PDF

Reidentification of Comamonas sp. Strain DJ-12 and Analysis of its pcbABC2D2 Genes Responsible for Degradation of 4-Chlorobiphenyl. (Comamonas sp. Strain DJ-12 의 재동정 및 4-Chlorobiphenyl 분해유전자 pcbABC2D2 의 분석)

  • 이준훈;박동우;강철희;채종찬;이동훈;김치경
    • Korean Journal of Microbiology
    • /
    • v.40 no.2
    • /
    • pp.121-126
    • /
    • 2004
  • Comamonas sp. strain DJ-12 is a 4-chlobiphenyl(4CB)-degrading bacterium that was reidentified from Pseudomonas sp. DJ-12. The genomic DNA was isolated from the strain DJ-12 and amplified by PCR with primers for cloning pcbABCD genes responsible for degradation of 4CB. The amino acid sequences deduced from the nucleotide sequences of pcbA1, pcbA2, pcbA3, pcbA4, pcbB, pcbC2, and pcbD2 genes showed 91, 87, 99, 87, 97, 90 and 87% homologies with those of Pseudomonas sp. KKS102, respectively. The pcbC1D1 genes that are involved in the degradation of (4-chloro)1,2-dihydroxybiphenyl produced from 4CB by pcbAB gene products were previously reported in the recombinant plasmid pCU1 from Pseudomonas sp. DJ-12. However, the pcbC2D2 genes in the plasmid pCT4 and pCT5 cloned from Comamonas sp. DJ-12 in this study showed 51 and 62% homologies with those of pcbC1D1 in their nucleotide sequences. The pcbC1D1 and pcbC2D2 genes were found by Southern hybridization to be located at different loci on the chromosome of DJ-12 strain. These results indicate that Comamonas sp. strain DJ-12 has two different sets of pcbCD genes responsible for deg-radation of (4-chloro)1,2-dihydroxybiphenyl.

Isolation and Identification of Pentachlorophenol-degrading Bacteria (Pentachlorophenol을 분해하는 세균의 분리와 동정)

  • Park, Young-Doo;Eum, Jin-Seong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.4
    • /
    • pp.261-265
    • /
    • 2000
  • To develope the enhanced bacterial strains capable of biodegradation for various chlorinated aromatic compounds, 100 bacterial strains were isolated from soil samples of suburbs of Taejon, Cheongju, and Jeonju by the enrichment culture. These strains can degrade pentachlorophenol (PCP) which is a kind of wood preservatives. Nineteen strains of the isolates were selected by fast colony-forming rate on solid minimal media containing PCP as an only source of carbon and energy. These strains were identified to genus level. Fifteen strains were identified as Pseudomonas, 1 strain as Acinetobacter and 3 strains were not. Genus Alcaligenes strains were not found among them. Pseudomonas sp. MU135. MU139, MU163 and MU 184 were able to degrade for 4 kinds of chlorinated compounds, PCP, 2,4-D, MCPA and 3CB. Pseudomonas sp. If was observed that MU139 exhibits the highest degradability in liquid minimal media at 72 hours after inoculation. Pseudomoans sp. MU147, MU177, MU184 and MU192 also degraded the compounds at higher rates. As the results, Pseudomonas sp. MU139 and unidentified strain MU184 had biodegrability for broad range of chlorinated compounds and higher rates of degradation for PCP.

  • PDF

Cloning and Expression of pcbC and pcbD Genes Responsible for 2,3-Dihydroxybiphenyl Degradation from Pseudomonas sp. P20

  • Nam, Jung-Hyun;Oh, Hee-Mock;Kim, Chi-Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.5 no.2
    • /
    • pp.68-73
    • /
    • 1995
  • Pseudomonas sp. P20 was shown to be capable of degrading biphenyl and 4-chlorobiphenyl (4CB) to produce the corresponding benzoic acids wnich were not further degraded. But the potential of the strain for biodegradation of 4CB was shown to be excellent. The pcbA, B, C and D genes responsible for the aromatic ring-cleavage of biphenyl and 4CB degradation were cloned from the chromosomal DNA of the strain. In this study, the pebC and D genes specifying degradation of 2, 3-dihydroxybiphenyl (2, 3-DHBP) produced from biphenyl by the pebAB-encoded enzymes were cloned by using pBluescript SK(+) as a vector. From the pCK102 (9.3 kb) containing pebC and D genes, pCK1022 inserted with a EcoRI-HindIII DNA fragment (4.1 kb) carrying pebC and D and a pCK1092 inserted with EcoRI-XbaI fragment (1.95 kb) carrying pebC were constructed. The expression of pcbC and D' in E. coli CK102 and pebC in E. coli CK1092 was examined by gas chromatography and UV-vis spectrophotometry. 2.3-dihydroxybiphenyl was readily degraded to produce meta-cleavage product (MCP) by E. coli CK102 after incubation for 10 min, and then only benzoic acid(BA) was detected in the 24-h old culture. The MCP was detected in E. coli CK1022 containing pebC and 0 genes (by the resting cells assay) for up to 3 h after incubation and then diminished completely in 8 h, whereas the MCP accumulated in the E. coli CK1092 culture even after 6 h of incubation. The 2, 3-DHBP dioxygenases (product of pebC gene) produced by E. coli CK1, CK102, CK1023, and CK1092 strains were measured by native PAGE analysis to be about 250 kDa in molecular weight, which were about same as those of Pseudomonas sp. DJ-12, P. pseudoa1caligenes KF707, and P. putida OU83.

  • PDF

Isolation of secondary metabolites from an Arctic bacterium, Pseudomonas aeruginosa and their antimicrobial activities (북극유래 박테리아, Pseudomonas aeruginosa로 부터 대사산물들의 분리 및 항진균 활성)

  • Youn, Ui Joung;Kim, Min Ju;Han, Se Jong;Yim, Jung Han
    • Korean Journal of Microbiology
    • /
    • v.52 no.4
    • /
    • pp.415-420
    • /
    • 2016
  • Chemical study of an Arctic bacterium, Pseudomonas aeruginosa (Pseudomonadaceae) led to the isolation of two diketopiperazines 1 and 2, two phenazine alkaloids 3 and 4, and an indole carbaldehyde 5, along with a benzoic acid derivative 6. The structures of the compounds were confirmed by 1D and 2D NMR, and MS experiments, as well as by comparison of their data with published values. Among the isolates, compounds 5 and 6 were isolated for the first time from P. aeruginosa of the seawater of Arctic Chuckchi Sea. Antimicrobial activities of compounds 1‒6 against a Staphylococcus aureus and Candida albicans were evaluated.

Degradation of Fat, Oil, and Grease (FOGs) by Lipase-Producing Bacterium Pseudomonas sp. Strain D2D3

  • Shon, Ho-Kyong;Tian, Dan;Kwon, Dae-Young;Jin, Chang-Suk;Lee, Tae-Jong;Chung, Wook-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.4
    • /
    • pp.583-591
    • /
    • 2002
  • Biodegradation of fat, oil, and grease (FOGs) plays an Important role in wastewater management and water pollution control. However, many industrial food-processing and food restaurants generate FOG-containing waste waters for which there Is no acceptable technology for their pretreatment. To solve these problems, this study evaluated the feasibility of effective FOG-degrading microorganisms on the biodegradation of olive oil and FOG-containing wastewater. Twenty-two strains capable of degrading FOGs were isolated from five FOG-contaminated sites for the evaluation of their FOG degradation capabilities. Among twenty-two strains tested, the lipase-producing Pseudomonas sp. strain D2D3 was selected for actual FOG wastewater treatment. Its biodegradability was performed at 3$0^{\circ}C$ and pH 8. The extent of FOG removal efficiency was varied for each FOG tested, being the highest for olive oil and animal fat (94.5% and 94.4%), and the lowest for safflower oil (62%). The addition of organic nitrogen sources such as yeast extract, soytone, and peptone enhanced the removal efficiency of FOGs, but the addition of the inorganic nitrogen nutrients such as $NH_4$Cl and $(NH_4)_2SO_4$ did not increase. The $KH_2PO_4$ sources in 0.25% to 0.5% concentrations showed more than 90% degradability. As a result, the main pathway for the oxidation of fatty acids results in the removal of two carbon atoms as acetyl-CoA with each reaction sequence: $\beta$-oxidation. Its lipase activity showed 38.5 U/g DCW using the optimal media after 9 h. Real wastewater and FOGs were used for determining the removal efficiency by using Pseudomonas sp. strain D2D3 bioadditive. The degradation by Pseudomonas sp. strain D2D3 was 41% higher than that of the naturally occurring bacteria. This result indicated that the use of isolated Pseudomonas sp. strain D2D3 in a bioaugmentating grease trap or other processes might possibly be sufficient to acclimate biological processes for degrading FOGs.