• Title/Summary/Keyword: Pseudoalteromonas carrageenovora

Search Result 7, Processing Time 0.017 seconds

Overexpression of Recombinant Arylsulfatase Cloned from Pseudoalteromonas carrageenovora

  • Kim Jong-Oh;Kim Seok-Ryel;Lim Jae-Myung;Nam Soo-Wan;Kim Hyeung-Rak
    • Fisheries and Aquatic Sciences
    • /
    • v.8 no.3
    • /
    • pp.118-121
    • /
    • 2005
  • Arylsulfatase cloned from a marine bacterium, Pseudoalteromonas carrageenovora, was over-expressed in Escherichia coli. Most of the recombinant arylsulfatase was found in the cell lysate with induction up to $10{\mu}M$ IPTG. However, enzyme activity was observed both in the culture supernatant and cell lysate by induction with IPTG concentration of $50-5,000{\mu}M$. Most of the recombinant enzyme was localized in the periplasmic space with $10{\mu}M$ IPTG induction, while half of the enzyme was distributed in the periplasmic space with $50{\mu}M$ IPTG induction. Cell growth and arylsulfatase activity did not change with the induction time, and the level of recombinant arylsulfatase expression was maintained at 4-5 U/mL after 6 to 14 hr of culture.

Pseudoalteromonas carrageenovora 유래 Arylsulfatase의 cloning과 재조합 E. coli에서 과발현

  • Im, Jae-Myeong;Kim, Hyeong-Rak;Kim, Seong-Gu;Nam, Su-Wan
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.571-575
    • /
    • 2003
  • A marine aerobic Gram-negative bacterium, Pseudoalteromonas carrageenovora, has been blown to hydrolyze carrageenans, the sulfated galactans of red algae, and to desulfate oligo kappa-carrageenans. Recently, the gene encoding arylsulfatase (aryl-sulfate sulfohydrolase, E.C.3.1.6.1) of A. carrageenovora was cloned and the nucleotide sequence was reported. Enzymatic hydrolysis of sulfate groups in agaropectin simplifies the process of agarose preparation. In order to overproduce the enzyme, the arylsulfatase gene (astA, 984 bp ORF) from P. carrageenovora genome was amplified by PCR and subcloned into the pET21a vector. When the constructed plasmid pAST-A1 was introduced into E, coli BL21(DE3), the transformant on LB plate containing IPTG showed the hydrolyzing activity for p-nitrophenyl sulfate. Most of arylsulfatase activity was found in the cell lysate, but at $50\;{\sim}\;5000\;{\mu}M$ IPTG concentration the activity was found both in the culture supernatant and the cell lysate. The molecular weight of the recombinant enzyme was estimated to be 34 kDa by SDS-PAGE.

  • PDF

Constitutive Expression of Arylsulfatase from Pseudoalteromonas carageenovora in E. coli and Its Application to Preparation of Agarose (E. coli에서 Pseudoalteromonas carageenovora 유래 Arylsulfatase의 구성적 발현과 Agarose 제조에의 응용)

  • Kim, Mi-Jin;Jang, Yhon-Hwa;Sung, Moon-Hee;Kim, Yeon-Hee;Nam, Soo-Wan
    • Microbiology and Biotechnology Letters
    • /
    • v.35 no.1
    • /
    • pp.11-16
    • /
    • 2007
  • The arylsulfatase gene (astA, 984 bp ORF) from Pseudoalteromonas carrageenovora genome was amplified by PCR and subcloned into the pHCE-IA vector, in which the hyper consitutive expression (HCE) promoter from the D-amino acid aminotransferase (D-AAT) gene of Geobacillus toevii was employed. The transformant cell, Escherichia coli BL21 (DE3)/pHCE-AST, on LB agar plate containig 4-methylumbelliferyl sulfate, showed an intense fluorescence at 360 nm, indicating that 4-methylumbelliferone was liberated by desulfatate activity. When BL21 (DE3)/pHCE-AST was grown on LB media containing 0.4% glucose or 0.4% glycerol, the arylsulfatase activity was higher at glycerol rather than at glucose. On 2% glycerol medium, the arylsulfatase activity reached 15.0 unit/ml, which was 2.6-fold higher expression level than that with 1% glycerol. The DNA ladder in agarose prepared from agar by this recombinant enzyme revealed similar resolution and migration patterns with a commercial agarose. This results suggests that arylsulfatase overexpressed in E. coli could be applicable to the economic production of electrophoretic-grade agarose.

Isolation and Characterization of an Agar-hydrolyzing Marine Bacterium, Pseudoalteromonas sp. H9, from the Coastal Seawater of the West Sea, South Korea (서해안 해수로부터 분리한 한천분해 해양미생물 Pseudoalteromonas sp. H9의 동정 및 특성 연구)

  • Chi, Won-Jae;Youn, Young Sang;Kim, Jong-Hee;Hong, Soon-Kwang
    • Microbiology and Biotechnology Letters
    • /
    • v.43 no.2
    • /
    • pp.134-141
    • /
    • 2015
  • An agarolytic marine bacterium (H9) was isolated from the coastal seawater of the West Sea, South Korea. The isolate, H9, was gram-negative and rod-shaped with a smooth surface and polar flagellum. Cells grew at 20-30℃, between pH 5.0 and 9.0, and in ASW-YP (Artificial Sea Water-Yeast extract, Peptone) media containing 1-5% (w/v) NaCl. The G+C content was 41.56 mol%. The predominant isoprenoid quinone in strain H9 was ubiquinone-8. The major fatty acids (>10%) were C16:1ω7c (34.3%), C16:0 (23.72%), and C18:1ω7c (13.64%). Based on 16S rRNA gene sequencing, and biochemical and chemotaxonomic characterization, the strain was designated as Pseudoalteromonas sp. H9 (=KCTC23887). In liquid culture supplemented with 0.2% agar, the cell density and agarase activity reached a maximum level of OD = 4.32 (48 h) and OD = 3.87 (24 h), respectively. The optimum pH and temperature for the extracellular crude agarases of H9 were 7.0 and 40℃, respectively. Thin-layer chromatography analysis of the agarase hydrolysis products revealed that the crude agarases hydrolyze agarose into neoagarotetraose and neoagarohexaose. Therefore, the new agar-degrading strain, H9, can be applicable for the production of valuable neoagarooligosaccharides and for the complete degradation of agar in bio-industries.

Overexpression of Arylsulfatase in E. coli and Its Application to Desulfatation of Agar

  • Lim, Jae-Myung;Jang, Yeon-Hwa;Kim, Hyeung-Rak;Kim, Young-Tae;Choi, Tae-Jin;Kim, Joong-Kyun;Nam, Soo-Wan
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.777-782
    • /
    • 2004
  • The arylsulfatase gene (astA, 984 bp ORF) from the P. carrageenovora genome was amplified by PCR and subcloned into the pET21a vector. When the constructed plasmid pAST-A1 (6.4 kb) was introduced into E. coli BL21(DE3), the transformant on the LB plate containing IPTG showed a hydrolyzing activity for 4-methylumbelliferyl sulfate and p-nitrophenyl sulfate. The highest arylsulfatase activity (2.1 unit/ml) was obtained at 10 mM IPTG. Most arylsulfatase activity was found in the cell lysate, whereas no significant activity was detected in the culture supernatant. The molecular weight of the recombinant enzyme was estimated to be 33.1 kDa by SDS-PAGE. After the reaction of agar with arylsulfatase for 12 h at $40^{\circ}C$, the gel strength of the agar increased by 2-fold, and 73% of the sulfate in the agar had been removed. This result suggests that arylsulfatase expressed in E. coli could be useful in the production of electrophoretic grade agarose.

Cell Surface Display of Arylsulfatase Gene from Pseudoalteromonas carageenovora in Saccharomyces cerevisiae (Saccharomyces cerevisiae에서 Pseudoalteromonas carageenovora 유래 Arylsulfatase 유전자의 표층 발현)

  • Cho, Eun-Soo;Kim, Hyun-Jin;Jung, So-A;Kim, Jeong-Hwan;Kim, Yeon-Hee;Nam, Soo-Wan
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.4
    • /
    • pp.355-360
    • /
    • 2009
  • In this study, the arylsulfatase gene (astA, 984 bp ORF) from Pseudoalteromonas carrageenovora genome was expressed on the cell surface of S. cerevisiae by fusing with Aga2p linked to the membrane anchored protein, Aga1p. The constructed plasmid, pCTAST (7.1 kb), was introduced to S. cerevisiae EBY100 cell, and yeast transformants on YPDG plate showed the hydrolyzing activity for 4-methylumbelliferyl-sulfate and p-nitrophenyl-sulfate. When S. cerevisiae EBY100/pCTAST was grown on YPDG medium, the arylsulfatase activity of cell pellet reached about 1.2 unit/mL, whereas no extracellular arylsulfatase activity was detected. The DNA ladder in agarose prepared from agar by this recombinant arylsulfatase showed similar resolution and migration patterns with a commercial agarose. This results revealed that arylsulfatase expressed on the cell surface of S. cerevisiae could be applicable to the economic production of electrophoretic-grade agarose.