• 제목/요약/키워드: Pseudo-marginal approach

검색결과 2건 처리시간 0.015초

Multiple Testing in Genomic Sequences Using Hamming Distance

  • Kang, Moonsu
    • Communications for Statistical Applications and Methods
    • /
    • 제19권6호
    • /
    • pp.899-904
    • /
    • 2012
  • High-dimensional categorical data models with small sample sizes have not been used extensively in genomic sequences that involve count (or discrete) or purely qualitative responses. A basic task is to identify differentially expressed genes (or positions) among a number of genes. It requires an appropriate test statistics and a corresponding multiple testing procedure so that a multivariate analysis of variance should not be feasible. A family wise error rate(FWER) is not appropriate to test thousands of genes simultaneously in a multiple testing procedure. False discovery rate(FDR) is better than FWER in multiple testing problems. The data from the 2002-2003 SARS epidemic shows that a conventional FDR procedure and a proposed test statistic based on a pseudo-marginal approach with Hamming distance performs better.

Estimation of Gini-Simpson index for SNP data

  • Kang, Joonsung
    • Journal of the Korean Data and Information Science Society
    • /
    • 제28권6호
    • /
    • pp.1557-1564
    • /
    • 2017
  • We take genomic sequences of high-dimensional low sample size (HDLSS) without ordering of response categories into account. When constructing an appropriate test statistics in this model, the classical multivariate analysis of variance (MANOVA) approach might not be useful owing to very large number of parameters and very small sample size. For these reasons, we present a pseudo marginal model based upon the Gini-Simpson index estimated via Bayesian approach. In view of small sample size, we consider the permutation distribution by every possible n! (equally likely) permutation of the joined sample observations across G groups of (sizes $n_1,{\ldots}n_G$). We simulate data and apply false discovery rate (FDR) and positive false discovery rate (pFDR) with associated proposed test statistics to the data. And we also analyze real SARS data and compute FDR and pFDR. FDR and pFDR procedure along with the associated test statistics for each gene control the FDR and pFDR respectively at any level ${\alpha}$ for the set of p-values by using the exact conditional permutation theory.