• Title/Summary/Keyword: Pseudo-Phase Space

Search Result 22, Processing Time 0.018 seconds

RF Seeker LOS Rate Estimation Method using Covariance and Signal Management (공분산 및 신호관리를 이용한 RF탐색기 시선각 변화율 추정기법)

  • Moon, Gwan-Young;Jun, Byung-Eul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.4
    • /
    • pp.292-299
    • /
    • 2012
  • The line-of-sight(LOS) rate is estimated using Kalman filter in Radio-Frequency(RF) seeker. For the two axis gimbaled seeker, proper system modeling is considered and the basic filter structure is set up. The main issue for Kalman filter is choosing the proper process and measurement noise. For the measurement process, the signal to noise ratio(SNR) and other components are introduced. To cope with the eclipse problem or other abnormal seeker status, the pseudo input signal concept is proposed. By conditioning abnormal signals, the LOS rate estimation performance is increased. The process noise is also an important factor in the propagation phase. The analytical approach on a process noise component is performed and a reliable region for the filter is calculated based on the eigenvalue analysis. Some numerical simulations are performed to check the validity of suggested algorithm.

Computation of Apparent Resistivity from Marine Controlled-source Electromagnetic Data for Identifying the Geometric Distribution of Gas Hydrate (가스 하이드레이트 부존양상 도출을 위한 해양 전자탐사 자료의 겉보기 비저항 계산)

  • Noh, Kyu-Bo;Kang, Seo-Gi;Seol, Soon-Jee;Byun, Joong-Moo
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.2
    • /
    • pp.75-84
    • /
    • 2012
  • The sea layer in marine Controlled-Source Electromagnetic (mCSEM) survey changes the conventional definition of apparent resistivity which is used in the land CSEM survey. Thus, the development of a new algorithm, which computes apparent resistivity for mCSEM survey, can be an initiative of mCSEM data interpretation. First, we compared and analyzed electromagnetic responses of the 1D stratified gas hydrate model and the half-space model below the sea layer. Amplitude and phase components showed proper results for computing apparent resistivity than real and imaginary components. Next, the amplitude component is more sensitive to the subsurface resistivity than the phase component in far offset range and vice versa. We suggested the induction number as a selection criteria of amplitude or phase component to calculate apparent resistivity. Based on our study, we have developed a numerical algorithm, which computes appropriate apparent resistivity corresponding to measured mCSEM data using grid search method. In addition, we verified the validity of the developed algorithm by applying it to the stratified gas hydrate models with various model parameters. Finally, by constructing apparent resistivity pseudo-section from the mCSEM responses with 2D numerical models simulating gas hydrate deposits in the Ulleung Basin, we confirmed that the apparent resistivity can provide the information on the geometric distribution of the gas hydrate deposit.