• 제목/요약/키워드: Pseudo labeling

검색결과 28건 처리시간 0.026초

강건한 객체탐지 구축을 위해 Pseudo Labeling 을 활용한 Active Learning (Active Learning with Pseudo Labeling for Robust Object Detection)

  • 김채윤;이상민
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 추계학술발표대회
    • /
    • pp.712-715
    • /
    • 2023
  • 딥러닝 기술의 발전은 고품질의 대규모 데이터에 크게 의존한다. 그러나, 데이터의 품질과 일관성을 유지하는 것은 상당한 비용과 시간이 소요된다. 이러한 문제를 해결하기 위해 최근 연구에서 최소한의 비용으로 최대의 성능을 추구하는 액티브 러닝(active learning) 기법이 주목받고 있는데, 액티브 러닝은 모델 관점에서 불확실성(uncertainty)이 높은 데이터들을 샘플링 하는데 중점을 둔다. 하지만, 레이블 생성에 있어서 여전히 많은 시간적, 자원적 비용이 불가피한 점을 고려할 때 보완이 불가피 하다. 본 논문에서는 의사-라벨링(pseudo labeling)을 활용한 준지도학습(semi-supervised learning) 방식과 학습 손실을 동시에 사용하여 모델의 불확실성(uncertainty)을 측정하는 방법론을 제안한다. 제안 방식은 레이블의 신뢰도(confidence)와 학습 손실의 최적화를 통해 비용 효율적인 데이터 레이블 생성 방식을 제안한다. 특히, 레이블 데이터의 품질(quality) 및 일관성(consistency) 측면에서 딥러닝 모델의 정확도 성능을 높임과 동시에 적은 데이터만으로도 효과적인 학습이 가능할 수 있는 메커니즘을 제안한다.

합성곱 순환 신경망 모델을 이용한 의사 레이블링 기법 기반 능동소나 표적 식별 약지도 딥러닝 알고리즘 연구 (A study on the weakly-supervised deep learning algorithm for active sonar target recognition based on pseudo labeling using convolutional recurrent neural network model)

  • 유예나;이원녕;이석진
    • 한국음향학회지
    • /
    • 제43권5호
    • /
    • pp.502-510
    • /
    • 2024
  • 본 논문은 음향 신호처리에 널리 사용되는 합성곱 순환 신경망(Convolutional Recurrent Neural Network, CRNN) 모델을 기반으로 의사 레이블링 기법을 적용하여 소량 및 불균형 능동소나 데이터를 효과적으로 활용할 수 있는 능동소나 표적 식별을 위한 약지도 딥러닝 알고리즘을 제안한다. 두 가지의 서로 다른 신호대잡음비와 클러터 환경을 가정하여 생성한 능동소나 시뮬레이션 데이터를 학습 및 테스트 과정에 사용하였으며, 시뮬레이션 데이터에 단시간 푸리에 변환(Short Time Fourier Transform, STFT)을 적용하여 얻은 스펙트로그램을 알고리즘 학습을 위한 특징 인자로 사용하였다. 본 논문에서 제안하는 알고리즘은 학습 데이터와 무관한 테스트 데이터를 사용하여 표적과 비표적 F1 점수를 지표로 성능을 평가하였으며, 그 결과 합성곱 순환 신경망 모델이 일반적인 음향 신호 처리뿐만 아니라 능동소나 표적 식별에서도 유의미한 성능을 보이는 것을 확인하였다. 또한 의사 레이블링 기법이 합성곱 순환 신경망 모델을 이용한 능동소나 표적 식별 알고리즘의 성능 개선에 도움을 주는 것을 확인할 수 있었다.

점진적 데이터 평준화를 이용한 반도체 웨이퍼 영상 내 결함 패턴 분류 (Wafer Map Defect Pattern Classification with Progressive Pseudo-Labeling Balancing)

  • 도정혁;김문철
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2020년도 추계학술대회
    • /
    • pp.248-251
    • /
    • 2020
  • 전 반도체 제조 및 검사 공정 과정을 자동화하는 스마트 팩토리의 실현에 있어 제품 검수를 위한 검사 장비는 필수적이다. 하지만 딥 러닝 모델 학습을 위한 데이터 처리 과정에서 엔지니어가 전체 웨이퍼 영상에 대하여 결함 항목 라벨을 매칭하는 것은 현실적으로 불가능하기 때문에 소량의 라벨 (labeled) 데이터와 나머지 라벨이 없는 (unlabeled) 데이터를 적절히 활용해야 한다. 또한, 웨이퍼 영상에서 결함이 발생하는 빈도가 결함 종류별로 크게 차이가 나기 때문에 빈도가 적은 (minor) 결함은 잡음처럼 취급되어 올바른 분류가 되지 않는다. 본 논문에서는 소량의 라벨 데이터와 대량의 라벨이 없는 데이터를 동시에 활용하면서 결함 사이의 발생 빈도 불균등 문제를 해결하는 점진적 데이터 평준화 (progressive pseudo-labeling balancer)를 제안한다. 점진적 데이터 평준화를 이용해 분류 네트워크를 학습시키는 경우, 기존의 테스트 정확도인 71.19%에서 6.07%-p 상승한 77.26%로 약 40%의 라벨 데이터가 추가된 것과 같은 성능을 보였다.

  • PDF

의사 레이블링을 통한 레이블이 없는 데이터 보완 연구 (Research on supplementing unlabeled data through pseudo-labeling.)

  • 유민희;유헌창
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 추계학술발표대회
    • /
    • pp.410-413
    • /
    • 2023
  • 레이블링 작업은 데이터 분석 시 필요한 사전 작업중 하나이다. 모든 데이터들에 대해 레이블링 작업은 시간/인적 자원을 필요로 하기에, 해당 작업을 보완할 방법이 존재한다면 요구되는 리소스를 줄여 효율성을 크게 향상시킬 수 있다. 본 논문에서는 통신회사에서 적재된 데이터 셋에 대하여 레이블이 없는 데이터(Unlabeled-data)에 대해 의사 레이블링(Pseudo-labeling), SMOTE 를 통한 데이터 증강을 활용하여 기존에 활용되지 못한 데이터를 추가하여 모델에 학습시킨다. 실험을 통해 의사 레이블을 통한 모델 학습 방법이 기존 도메인 지식의 레이블 방법보다 효율적이고 성능이 우수함을 확인하였다.

감정 인식을 위해 CNN을 사용한 최적화된 패치 특징 추출 (Optimized patch feature extraction using CNN for emotion recognition)

  • 하이더 이르판;김애라;이귀상;김수형
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 춘계학술발표대회
    • /
    • pp.510-512
    • /
    • 2023
  • In order to enhance a model's capability for detecting facial expressions, this research suggests a pipeline that makes use of the GradCAM component. The patching module and the pseudo-labeling module make up the pipeline. The patching component takes the original face image and divides it into four equal parts. These parts are then each input into a 2Dconvolutional layer to produce a feature vector. Each picture segment is assigned a weight token using GradCAM in the pseudo-labeling module, and this token is then merged with the feature vector using principal component analysis. A convolutional neural network based on transfer learning technique is then utilized to extract the deep features. This technique applied on a public dataset MMI and achieved a validation accuracy of 96.06% which is showing the effectiveness of our method.

pCASL 관류 영상에서 표지 간격과 자화감수성 인공물이 영상에 미치는 영향 (The effects of labeling gap and susceptibility artifacts in pCASL perfusion MRI)

  • 김성후
    • 한국방사선학회논문지
    • /
    • 제9권4호
    • /
    • pp.213-217
    • /
    • 2015
  • 스텐트 삽입술을 시행한 환자에게 ASL 방법 중 pCASL을 이용한 관류영상에서 나타난 인공물을 보고하고 이에 대한 해결방법을 제시하고자 한다. pCASL데이터는 구조적 이미지와 함께 스텐트를 피해 표지 펄스(labeling pulse)의 위치를 변경하여 획득하였다. 데이터는 ASLtbx를 이용하여 처리하였다. pCASL을 이용하여 관류영상을 획득하였을 때 기존의 표지 펄스(표지 간격(labeling gap) 24 mm)의 위치가 스텐트의 위치와 겹쳐져서 우뇌 조직의 신호강도가 비어 있는 것처럼 나타났다. 스텐트를 피해 표지 펄스(표지 간격 15 mm)를 위치시킬 때 높은 신호강도의 영상을 획득할 수 있었으며, 표지 펄스(표지 간격 170 mm)에서는 labeled 혈액이 영상절편에 도달하기 전에 이완이 되어 낮은 신호강도의 영상을 획득 하였다. pCASL은 조영제를 사용하지 않기 때문에 안정적으로 반복측정이 가능하며 양질의 영상 획득을 위해서는 알맞은 영상획득인자와 방법들이 선택되어야 한다.

의사 밝기 영상을 이용한 에지 기반형 거리 영상 분할 (Edge-based range image segmentation method using pseudo reflectance images)

  • 송호근;김태은;최종수
    • 전자공학회논문지B
    • /
    • 제33B권4호
    • /
    • pp.111-123
    • /
    • 1996
  • In this paper, a new edge-based segmentation algorithm for range image using pseudo reflectance images (PRIs) is proposed. A model of pseudo reflectance which is useful in analyzing three dimensional scene and objects is introduced and then three PRIs are generated by the model. For generating three PRIs, bels and jain's differential window operator is selected and three different light source directions are determined. Three edge images are extracted from each PRI and a fused (logical ORing) edge image is constructed for the benefit of enhanced edge formation. The final segmentation results of the proposed algoritm are obtained after the processing of thinning, labeling and correcting erroeneous regions with the fused edge image. The good performance of edge detection and segmentation is confirmed via computer simulation with synthetic and real range images.

  • PDF

딥러닝 기반 분류 모델의 준 지도 학습 기법 분석 (The Analysis of Semi-supervised Learning Technique of Deep Learning-based Classification Model)

  • 박재현;조성인
    • 방송공학회논문지
    • /
    • 제26권1호
    • /
    • pp.79-87
    • /
    • 2021
  • 본 논문에서는 소량의 레이블 데이터로 딥러닝 기반 분류 모델을 훈련할 때 적용되는 준 지도 학습 기법 (semi-supervised learning: SSL)에 대해서 분석한다. 기존의 준 지도 학습 기법은 크게 일관성 정규화 (consistency regularization), 엔트로피 기반 (entropybased), 의사 레이블링 (pseudo labeling)으로 구분할 수 있다. 우선, 각 준 지도 학습 기법의 알고리즘에 대해서 서술한다. 실험에서는 준 지도학습 기법을 레이블 데이터의 수를 변화시키면서 훈련 후 분류 정확도를 평가한다. 최종적으로 실험 결과를 바탕으로 기존 준 지도 학습 기법의 한계에 대해서 서술하고, 분류 성능을 향상하기 위한 연구 방향을 제시한다.

Pseudo Labeling을 통한 한국어 대화 추론 데이터셋 구축 (Constructing Korean Dialogue Natural Inference Dataset through Pseudo Labeling)

  • 이영준;;최윤수;임지희;최호진
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.205-209
    • /
    • 2022
  • 페르소나 대화 시스템이 상대방의 개인화된 정보에 일관된 응답을 생성하는 것은 상당히 중요하며, 이를 해결하기 위해 최근에 많은 연구들이 활발히 이루어지고 있다. 그 중, PersonaChat 데이터셋에 대해 수반/중립/모순 관계를 라벨링한 DialoguNLI 데이터셋이 제안되었으며, 일관성 측정, 페르소나 속성 추론 태스크 등 여러 분야에 활용되고 있다. 그러나, 공개적으로 이용가능한 한국어로 된 대화 추론 데이터셋은 없다. 본 연구에서는 한국어로 번역된 페르소나 대화 데이터셋과 한국어 자연어 추론 데이터셋에 학습된 모델을 이용하여 한국어 대화 추론 데이터셋(KorDialogueNLI)를 구축한다. 또한, 사전학습된 언어모델을 학습하여 한국어 대화 추론 모델 베이스라인도 구축한다. 실험을 통해 정확도 및 F1 점수 평가 지표에서 KLUE-RoBERTa 모델을 미세조정(fine-tuning)시킨 모델이 가장 높은 성능을 달성하였다. 코드 및 데이터셋은 https://github.com/passing2961/KorDialogueNLI에 공개한다.

  • PDF

Arterial Spin Labeling Magnetic Resonance Imaging in Healthy Adults: Mathematical Model Fitting to Assess Age-Related Perfusion Pattern

  • Ying Hu;Rongbo Liu;Fabao Gao
    • Korean Journal of Radiology
    • /
    • 제22권7호
    • /
    • pp.1194-1202
    • /
    • 2021
  • Objective: To investigate the age-dependent changes in regional cerebral blood flow (CBF) in healthy adults by fitting mathematical models to imaging data. Materials and Methods: In this prospective study, 90 healthy adults underwent pseudo-continuous arterial spin labeling imaging of the brain. Regional CBF values were extracted from the arterial spin labeling images of each subject. Multivariable regression with the Akaike information criterion, link test, and F test (Ramsey's regression equation specification error test) was performed for 7 models in every brain region to determine the best mathematical model for fitting the relationship between CBF and age. Results: Of all 87 brain regions, 68 brain regions were best fitted by cubic models, 9 brain regions were best fitted by quadratic models, and 10 brain regions were best fitted by linear models. In most brain regions (global gray matter and the other 65 brain regions), CBF decreased nonlinearly with aging, and the rate of CBF reduction decreased with aging, gradually approaching 0 after approximately 60. CBF in some regions of the frontal, parietal, and occipital lobes increased nonlinearly with aging before age 30, approximately, and decreased nonlinearly with aging for the rest of life. Conclusion: In adults, the age-related perfusion patterns in most brain regions were best fitted by the cubic models, and age-dependent CBF changes were nonlinear.