• 제목/요약/키워드: Pseudo force

검색결과 115건 처리시간 0.021초

Solution Structure of Bovine Pancreatic Trypsin Inhibitor using NMR Chemical Shift Restraints

  • Park, Kyunglae;Wil
    • 한국자기공명학회논문지
    • /
    • 제1권2호
    • /
    • pp.79-94
    • /
    • 1997
  • The solution structure of bovine pancreatic trypsin inhibitor(BPTI) has been refined by NMR chemical shift data of C${\alpha}$H using classical molecular dynamics simulation. The structure dependent part of the observable chemical shift was modeled by ring current effect, magnetic anisotropy effect from the nearby groups, whereas the structure independent part was replaced with the random coil shift. A new harmonic function derived from the differences between the observed and calculated chemical shifts was added into physical force field as an pseudo potential energy term with force constant of 250 kJmol-1 ppm-2. During the 1.5 ns molecular dynamics simulation with chemical shift restraints BPTI has accessed different conformation space compared to crystal and NOE driven structure.

  • PDF

엔드밀링가공시 과도 영역에서의 안정성 평가 (Stability Analysis in Transient Cut during Endmilling)

  • 강석재;조동우
    • 한국정밀공학회지
    • /
    • 제18권3호
    • /
    • pp.195-204
    • /
    • 2001
  • Virtual computer numerical control(VCNC) arises from the concept that one can experience pseudo-real machining with a computer-numerically-controlled(CNC) machine before actually cutting an object. To achieve accurate VCNC, it is important to determine abnormal behavior, such as chatter, before cutting. Detecting chatter requires an understanding of the dynamic cutting force model. In general, the cutting process is a closed loop system that consists of structural and cutting dynamics. Machining instability, namely chatter, results from the interaction between these two dynamics. Several previous reports have predicted stability for a single path, using a simple cutting force model without tool runout and penetration effects. This study considers both tool runout and penetration effects, using experimental modal analysis, to obtain more accurate predictions. The machining stability in the corner cut, which is a typical transient cut, was assessed from an evaluation of the cutting configurations at the corner.

  • PDF

Dynamical behaviour of electrically actuated microcantilevers

  • Farokhi, Hamed;Ghayesh, Mergen H.
    • Coupled systems mechanics
    • /
    • 제4권3호
    • /
    • pp.251-262
    • /
    • 2015
  • The current paper aims at investigating the nonlinear dynamical behaviour of an electrically actuated microcantilever. The microcantilever is excited by a combination of AC and DC voltages. The nonlinear equation of motion of the microcantilever is obtained by means of force and moment balances. A high-dimensional Galerkin scheme is then applied to reduce the equation of motion to a discrete model. A numerical technique, based on the pseudo-arclength continuation method, is used to solve the discretized model. The electrostatic deflection of the microcantilever and static pull-in instabilities, due to the DC voltage, are analyzed by plotting the so-called DC voltage-deflection curves. At the simultaneous presence of the DC and AC voltages, the nonlinear dynamical behaviour of the microcantilever is analyzed by plotting frequency-response and force-response curves.

고관절 구동 방식을 갖는 바퀴-다리형 로봇과 지면 간 접촉점에서의 마찰계수 추정 (Estimation of the Frictional Coefficient of Contact Point between the Terrain and the Wheel-Legged Robot with Hip Joint Actuation)

  • 신동환;안진웅;문전일
    • 로봇학회논문지
    • /
    • 제6권3호
    • /
    • pp.284-291
    • /
    • 2011
  • This paper presents the estimation of the frictional coefficient of the wheel-legged robot with hip joint actuation producing maximum tractive force. Slip behavior for wheel-legged robot is analytically explored and physically understood by identification of the non-slip condition and derivation of the torque limits satisfying it. Utilizing results of the analysis of slip behavior, the frictional coefficients of the wheel-legged robot during stance phase are numerically estimated and finally this paper suggests the pseudo-algorithm which can not only estimate the frictional coefficients of the wheel-legged robot, but also produce the candidate of the touch down angle for the next stance.

Multi-Objective Optimal Design of a Single Phase AC Solenoid Actuator Used for Maximum Holding Force and Minimum Eddy Current Loss

  • Yoon, Hee-Sung;Eum, Young-Hwan;Zhang, Yanli;Koh, Chang-Seop
    • Journal of Electrical Engineering and Technology
    • /
    • 제3권2호
    • /
    • pp.218-223
    • /
    • 2008
  • A new Pareto-optimal design algorithm, requiring least computational work, is proposed for a single phase AC solenoid actuator with multi-design-objectives: maximizing holding force and minimizing eddy current loss simultaneously. In the algorithm, the design space is successively reduced by a suitable factor, as iteration repeats, with the center of pseudo-optimal point. At each iteration, the objective functions are approximated to a simple second-order response surface with the CCD sampling points generated within the reduced design space, and Pareto-optimal solutions are obtained by applying($1+{\lambda}$) evolution strategy with the fitness values of Pareto strength.

기초체계의 운동학적 상호작용을 고려한 고층건물의 응답스펙트럼에 미치는 고차모드의 영향 (Effects of Higher Modes on the Response Spectra of High-rise Buildings considering the Kinematic Interaction of a Foundation System)

  • 김용석
    • 한국지진공학회논문집
    • /
    • 제19권3호
    • /
    • pp.85-92
    • /
    • 2015
  • Response spectra of a building are made with a SDOF system taking into account a first mode shape, even though higher modes may affect on the dynamic responses of a high-rise building. A soft soil layer under a building also affects on the responses of a building. In this study, seismic responses of a MDOF system were investigated to examine the effects of higher modes on the response of a tall building by comparing them with those of a SDOF system including the kinematic interaction effect. Study was performed using a pseudo 3D finite element program with seven bedrock earthquake records downloaded from the PEER database. Effects of higher modes on the seismic responses of a tall building were investigated for base shear force and base moment of a MDOF system including story shear forces and story moments. Study results show that higher modes of a MDOF system contribute to a reduction of base shear force up to 1/4-1/5 of KBC and base moment. The effect of higher modes is more significant on the base shear force than on the base moment. Maximum story shear force and moment occurred at the top part of a building rather than at a base in the cases of tall buildings differently from short buildings, and higher modes of a tall building affected on the base forces making them almost constant at the base. A soft soil layer also affects some on the base shear force of a high-rise building independently on the soft soil type, but a soft soil effect is prominent on the base moment.

블록식 보강토 옹벽의 내진설계에 관한 비교연구 (Comparative Study on Seismic Design of Soil-Reinforced Segmental Retaining Walls)

  • 유충식
    • 한국지반공학회논문집
    • /
    • 제16권4호
    • /
    • pp.51-61
    • /
    • 2000
  • 본 논문에서는 블록식 보강토 옹벽의 내진 설계/해석 개념을 고찰하고 현재 적용되고 있는 대표적인 설계기준이라고 할 수 있는 NCMA 및 FHWA 설계기준을 비교.분석하였다. 그 결과 NCMA와 FHWA 설계기준은 동일한 외적안정성 검토모형을 적용함에도 불구하고 지진계수 산정 기준의 차이로 인해 외적안정성 검토결과가 상이하게 나타나며, 전반적으로 FHWA 설계기준이 다소 보수적인 결과를 주는 것으로 나타났다. 한편, NCMA 설계기준에서 채택하고 있는 내적안정성 검토방법에 의하면 지진하중으로 인한 유발인장력의 증가 정도가 벽체 상단부로 갈수록 현저히 크게 나타나므로 상단부에서의 보강재 수를 증가시켜야할 뿐만 아니라 충분한 인발저항력 확보를 위해 정착길이를 증가시켜야 하나 FHWA 설계기준은 하단부 보강재에 동적하중을 재분배하는 모형을 채택하고 있으므로 NCMA 설계기준과는 상반된 결과를 도출하는 것으로 나타났다. 본 연구의 결과는 효율적인 설계기준의 개발을 위해 보다 종합적이고 체계적인 연구의 필요성을 제시하고 있다.

  • PDF

Simplified procedure for seismic analysis of base-isolated structures

  • Serror, Mohammed H.;El-Gazzar, Sherif O.;Mourad, Sherif A.
    • Earthquakes and Structures
    • /
    • 제8권5호
    • /
    • pp.1091-1111
    • /
    • 2015
  • Base isolation is an effective method for protecting structures against earthquake hazard. It elongates the period of vibration and introduces supplemental damping to the structural system. The stiffness, damping and displacement are coupled forcing the code seismic design procedure to be unnecessarily complicated. In addition, the force reduction factor -a key parameter in the design procedurehas not been well addressed by seismic design codes at the high levels of damping due to the pronounced difference between pseudo and actual accelerations. In this study, a comparison has been conducted to evaluate eight different methods, in the literature, for calculating the force reduction factor due to damping. Accordingly, a simplified seismic analysis procedure has been proposed based on the well documented N2 method. Comprehensive analysis has been performed for base-isolated structure models for direct application and verification of the proposed procedure. The results have been compared with those of the European code EC8, the nonlinear time history analysis and investigations in the literature, where good agreement has been reported. In addition, a discussion has been elaborated for the resulted response of the base-isolated structure models with respect to the dynamic characteristics of the base isolation system.

역문제에 의한 구조물의 실동하중 해석 (Analysis of Practical Dynamic Force of Structure with Inverse Problem)

  • 송준혁;노홍길;김홍건;유효선;강희용;양성모
    • 한국공작기계학회논문집
    • /
    • 제13권2호
    • /
    • pp.75-80
    • /
    • 2004
  • Vehicle structures are composed of many substructure connected to one another by various types of mechanical joints. In vehicle engineering it is important to study these connected structures under various dynamic forces for the evaluations of fatigue life and stress concentration exactly. It is difficult to obtain the accurate load history of specified positions because of the errors such as modeling, measurement and etc. In the beginning of design exact load data are actually necessary for the fatigue strength and life analysis to minimize the cost and time of designing. In this paper, the procedure of practical dynamic force determination is developed by the combination of the principal stresses of F. E. Analysis and experiment. Least square pseudo inverse matrix is adopted to obtain in inverse matrix of analyzed stresses matrix. The error minimization method utilizes the inaccurate measured error and the shifting error that the whole data is stiffed over real data. The least square criterion is adopted to avoid these non. Finally, to verify the proposed procedure, a bus is analyzed. This measurement and prediction technology can be extended to the structural modification of any geometric shape in complex structure.

Scanning Force Microscope에 의한 (001) PMN-x%PT 단결정의 도메인 구조에 대한 연구 (Investigation of Domain Structure in (001) PMN-x%PT Crystals by Scanning Force Microscope)

  • 이은구;이재갑
    • 한국재료학회지
    • /
    • 제19권6호
    • /
    • pp.300-304
    • /
    • 2009
  • The domain structures of annealed (001)-oriented $Pb(Mg_{1/3}Nb_{2/3})O_3-x%PbTiO_3$ (PMN-x%PT) crystals for x = 10, 20, 30, 35, and 40 at% were investigated by Polarized Optical Microscopy (POM) and Scanning Force Microscopy (SFM) in the piezoresponse mode. Both Polar Nano-Domains (PND) and long strip-like domains were clearly observed. The results also showed how the domain structure changed between phases with an increasing x in the PMN-x%PT crystals and the domain hierarchy on various length scales ranging from 40 nm to 0.1 mm. Distorted pseudo-cubic phase (x < 20%) consisted of PNDs that did not self-assemble into macro-domain plates. The rhombohedral phase (x = 30%) consisted of PNDs that began to self-assemble into colonies along preferred {110} planes. The monoclinic phase (x = 35%) consisted of miniature polar domains on the nm scale, whereas, the tetragonal phase (x = 40%) consisted of {001} oriented lamella domains on the mm scale that had internal nano-scale heterogeneities, which self-assembled into macro-domain plates oriented along {001} the mm scale.