• 제목/요약/키워드: Pseudo force

검색결과 115건 처리시간 0.019초

Nonlinear numerical simulation of RC columns subjected to cyclic oriented lateral force and axial loading

  • Sadeghi, Kabir
    • Structural Engineering and Mechanics
    • /
    • 제53권4호
    • /
    • pp.745-765
    • /
    • 2015
  • A nonlinear Finite Element (FE) algorithm is proposed to analyze the Reinforced Concrete (RC) columns subjected to Cyclic Loading (CL), Cyclic Oriented Lateral Force and Axial Loading (COLFAL), Monotonic Loading (ML) or Oriented Pushover Force and Axial Loading (OPFAL) in any direction. In the proposed algorithm, the following parameters are considered: uniaxial behavior of concrete and steel elements, the pseudo-plastic hinge produced in the critical sections, and global behavior of RC columns. In the proposed numerical simulation, the column is discretized into two Macro-Elements (ME) located between the pseudo-plastic hinges at critical sections and the inflection point. The critical sections are discretized into Fixed Rectangular Finite Elements (FRFE) in general cases of CL, COLFAL or ML and are discretized into Variable Oblique Finite Elements (VOFE) in the particular cases of ML or OPFAL. For pushover particular case, a fairly fast converging and properly accurate nonlinear simulation method is proposed to assess the behavior of RC columns. The proposed algorithm has been validated by the results of tests carried out on full-scale RC columns.

The role of wall configuration and reinforcement type in selecting the pseudo-static coefficients for reinforced soil walls

  • Majid Yazdandoust;Amirhossein Rasouli Jamnani;Mohsen Sabermahani
    • Geomechanics and Engineering
    • /
    • 제35권5호
    • /
    • pp.555-570
    • /
    • 2023
  • In the current study, a series of experimental and analytical evaluations were performed to introduce the horizontal pseudo static coefficient (kh) as a function of the wall configuration and the reinforcement type for analyzing reinforced soil walls. For this purpose, eight shaking table tests were performed on reduced-scale models of integrated and two-tiered walls reinforced by metal strip and geogrid to determine the distribution of dynamic lateral pressure in the walls. Then, the physical models were analyzed using Mononobe-Okabe method to estimate the value of kh required to establish the dynamic lateral pressures similar to those observed in shaking table tests. Based on the results, the horizontal pseudo static coefficient and the position of resultant lateral force (R) were introduced as a function of the horizontal peak ground acceleration (HPGA), the wall configuration, the reinforcement type as well as maximum wall displacement.

응답예측모델을 이용한 속도의존형 감쇠장치의 최대제어력 산정 (Maximum Control Force of Velocity-dependent Damping Devices Using Response Estimation Models)

  • 이상현;민경원
    • 한국소음진동공학회논문집
    • /
    • 제14권6호
    • /
    • pp.503-511
    • /
    • 2004
  • 본 연구에서는 푸리에 모델, 확률 모델, 그리고 Newmark 설계 스펙트럼 방법과 같은 응답예측 모델을 사용하여 속도의존형 감쇠장치에 의해 제어되는 구조물의 응답과 제어기의 최대제어력을 예측하였다. 이를 위해, 유사 속도로부터 실제 속도를 예측하는 방법이 제안되었으며, 이 방법은 감쇠장치에 의해 증가되는 감쇠비의 실제속도에 대한 효과를 고려한다. 시간이력해석결과는 정확한 최대제어력을 예측하기 위해서는 실제속도가 사용되어야 하며, 제안된 방법에 의해 수정된 Newmark 설계 스펙트럼이 가장 전 주기구간에 걸쳐 정확한 예측 값을 산정함을 보여준다.

터빈유량계의 3차원 유동에 관한 수치적 연구 (Numerical Study of Three-dimensional Flow Through a Turbine Flow Meter)

  • 김진범;고성호
    • 한국유체기계학회 논문집
    • /
    • 제6권1호
    • /
    • pp.44-50
    • /
    • 2003
  • Flow through a turbine flow meter is simulated by solving the incompressible Navier-Stokes equations. The solution method is based on the pseudo-compressibility approach and uses an implicit-upwind differencing scheme together with the Gauss-Seidel line relaxation method. The equations are solved steadily in rotating reference frames, and the centrifugal force and the Coriolis force are added to the equation of motion. The standard $k-{\epsilon}$model is employed to evaluate turbulent viscosity. Computational results yield quantitative as well as qualitative information on the design of turbine flow meters by showing the distributions of pressure and velocity around the turbine blades.

Surrounding rock pressure of shallow-buried bilateral bias tunnels under earthquake

  • Liu, Xin-Rong;Li, Dong-Liang;Wang, Jun-Bao;Wang, Zhen
    • Geomechanics and Engineering
    • /
    • 제9권4호
    • /
    • pp.427-445
    • /
    • 2015
  • By means of finite element numerical simulation and pseudo-static method, the shallow-buried bilateral bias twin-tube tunnel subject to horizontal and vertical seismic forces are researched. The research includes rupture angles, the failure mode of the tunnel and the distribution of surrounding rock relaxation pressure. And the analytical solution for surrounding rock relaxation pressure is derived. For such tunnels, their surrounding rock has sliding rupture planes that generally follow a "W" shape. The failure area is determined by the rupture angles. Research shows that for shallow-buried bilateral bias twin-tube tunnel under the action of seismic force, the load effect on the tunnel structure shall be studied based on the relaxation pressure induced by surrounding rock failure. The rupture angles between the left tube and the right tube are independent of the surface slope. For tunnels with surrounding rock of Grade IV, V and VI, which is of poor quality, the recommended reinforcement range for the rupture angles is provided when the seismic fortification intensity is VI, VII, VIII and IX respectively. This study is expected to provide theoretical support regarding the ground reinforcement range for the shallow-buried bilateral bias twin-tube tunnel under seismic force.

금속벨트 CVT의 유효마찰계수와 개선된 변속비-토크-드러스트 관계식 (Effective Friction Coefficient and Improved Formula of Speed Ratio-Torque-Thrust Relationship for Metal Belt CVT)

  • 이병준;김현수
    • 한국자동차공학회논문집
    • /
    • 제6권6호
    • /
    • pp.226-233
    • /
    • 1998
  • In this paper, an experimental study was performed to investigate the speed ratio-torque-thrust characteristics for metal belt CVT. It is observed from the experimental results that nondimensional secondary thrust force follows with the existing theoretical formula with ${\mu}$=0.09~0.12 depending on the torque and the speed ratio. In order to represent these characteristics, an effective friction coefficient was introduced. Also, the slip characteristics between the belt and the pulley were investigated experimentally and traction coefficients at gross slip were obtained for various speed ratios. Using the traction coefficients and the effective friction coefficients, an improved formula for the secondary thrust force was suggested assuming that thrust force is the summation of the thrust of pseudo inactive arc and the thrust of pseudo active arc. The effective friction coefficient and the improved formula for the speed ratio-torque-thrust relationship suggested in this work can be used to obtain the appropriate secondary thrust.

  • PDF

Analysis of building frames with viscoelastic dampers under base excitation

  • Shukla, A.K.;Datta, T.K.
    • Structural Engineering and Mechanics
    • /
    • 제11권1호
    • /
    • pp.71-87
    • /
    • 2001
  • A frequency domain response analysis is presented for building frames passively controlled by viscoelastic dampers, under harmonic ground excitation. Three different models are used to represent the linear dynamic force-deformation characteristics of viscoelastic dampers namely, Kelvin model, Linear hysteretic model and Maxwell model. The frequency domain solution is obtained by (i) an iterative pseudo-force method, which uses undamped mode shapes and frequencies of the system, (ii) an approximate modal strain energy method, which uses an equivalent modal damping of the system in each mode of vibration, and (iii) an exact method which uses complex frequency response function of the system. The responses obtained by three different methods are compared for different combinations of viscoelastic dampers giving rise to both classically and non-classically damped cases. In addition, the effect of the modelling of viscoelastic dampers on the response is investigated for a certain frequency range of interest. The results of the study are useful in appropriate modelling of viscoelastic dampers and in understanding the implication of using modal analysis procedure for building frames which are passively controlled by viscoelastic dampers against base excitation.

Snap back testing of unbonded post-tensioned concrete wall systems

  • Twigden, Kimberley M.;Henry, Richard S.
    • Earthquakes and Structures
    • /
    • 제16권2호
    • /
    • pp.209-219
    • /
    • 2019
  • Unbonded Post-Tensioned (UPT) precast concrete systems have been shown to provide excellent seismic resistance. In order to improve understanding of the dynamic response of UPT systems, a series of snap back tests on four UPT systems was undertaken consisting of one Single Rocking Wall (SRW) and three Precast Wall with End Columns (PreWEC) systems. The snap back tests provided both a static pushover and a nonlinear free vibration response of a system. As expected the SRW exhibited an approximate bi-linear inertia force-drift response during the free vibration decay and the PreWEC walls showed an inertia force-drift response with increased strength and energy dissipation due to the addition of steel O-connectors. All walls exhibited negligible residual drifts regardless of the number of O-connectors or the post-tensioning force. When PreWEC systems of the same strength were compared the inclusion of further energy dissipating O-connectors was found to decrease the measured peak wall acceleration. Both the local and global wall parameters measured at pseudo-static and dynamic loading rates showed similar behaviour, which demonstrates that the dynamic behaviour of UPT walls is well represented by pseudo-static tests. The SRW was found to have Equivalent Viscous Damping (EVD) between 0.9-3.8% and the three PreWEC walls were found to have maximum EVD of between 14.7-25.8%.

A model for investigating vehicle-bridge interaction under high moving speed

  • Liu, Hanyun;Yu, Zhiwu;Guo, Wei;Han, Yan
    • Structural Engineering and Mechanics
    • /
    • 제77권5호
    • /
    • pp.627-635
    • /
    • 2021
  • The speed of rail vehicles become higher and higher over two decades, and China has unveiled a prototype high-speed train in October 2020 that has been able to reach 400 km/h. At such high speeds, wheel-rail force items that had previously been ignored in common computational model should be reevaluated and reconsidered. Aiming at this problem, a new model for investigating the vehicle-bridge interaction at high moving speed is proposed. Comparing with the common model, the new model was more accurate and applicable, because it additionally considers the second-order pseudo-inertia forces effect and its modeling equilibrium position was based on the initial deformed curve of bridge, which could include the influences of temperature, pre-camber, shrinkage and creep deformation, and pier uneven settlement, etc. Taking 5 km/h as the speed interval, the dynamic responses of the classical vehicle-bridge system in the speed range of 5 km/h to 400 km/h are studied. The results show that ignoring the second-order pseudo-inertia force will underestimate the dynamic response of vehicle-bridge system and make the high-speed railway bridge structure design unsafe.

연속적 역변환이 가능한 힘 모델을 이용한 환형권선 셀프베어링 BLDC 모터의 부상 제어기 구현 (Implementation of Levitation Controller for Toroidally-Wound Self-Bearing BLDC Motor Using Continuously Invertible Force Model)

  • 최원영;최정규;노명규
    • 대한기계학회논문집A
    • /
    • 제37권7호
    • /
    • pp.899-903
    • /
    • 2013
  • 셀프베어링 모터는 하나의 자기 구동기(magnetic actuator)로 회전 구동과 자기부상을 동시에 구현한 전동기로 베어링리스모터 혹은 베어링 내장 모터로 불리기도 한다. 셀프베어링 모터에서 자기부상제어를 구현하기 위해 부상력과 제어전류 간의 모델을 역변환하여야 하는데, 힘-전류 간의 모델을 결정하는 변환행렬이 정방행렬이 아니며, 의사역행렬(pseudo-inverse) 또한 회전자의 각도에 따라 특이점을 가지게 된다. 본 논문에서는 힘-전류 모델에 제한조건을 추가하여 연속적 역변환이 가능한 새로운 방법을 제시하고, 역변환 행렬을 해석적으로 구하였다. 연속적 역변환을 이용한 부상제어기를 구현하여 안정적 부상제어가 이루어짐을 확인하였다. 힘-전류 모델에 추가한 제한조건으로 상전류의 총합이 0 을 유지하여 전류에 의한 고정자 자속밀도를 제거함으로써, 이전 연구에서의 자기포화 문제를 근본적으로 해결하였다.