• Title/Summary/Keyword: Pseudo 2D HMM

Search Result 5, Processing Time 0.019 seconds

Study On The Robustness Of Face Authentication Methods Under illumination Changes (얼굴인증 방법들의 조명변화에 대한 견인성 비교 연구)

  • Ko Dae-Young;Kim Jin-Young;Na Seung-You
    • The KIPS Transactions:PartB
    • /
    • v.12B no.1 s.97
    • /
    • pp.9-16
    • /
    • 2005
  • This paper focuses on the study of the face authentication system and the robustness of fact authentication methods under illumination changes. Four different face authentication methods are tried. These methods are as fellows; PCA(Principal Component Analysis), GMM(Gaussian Mixture Modeis), 1D HMM(1 Dimensional Hidden Markov Models), Pseudo 2D HMM(Pseudo 2 Dimensional Hidden Markov Models). Experiment results involving an artificial illumination change to fate images are compared with each other. Face feature vector extraction based on the 2D DCT(2 Dimensional Discrete Cosine Transform) if used. Experiments to evaluate the above four different fate authentication methods are carried out on the ORL(Olivetti Research Laboratory) face database. Experiment results show the EER(Equal Error Rate) performance degrade in ail occasions for the varying ${\delta}$. For the non illumination changes, Pseudo 2D HMM is $2.54{\%}$,1D HMM is $3.18{\%}$, PCA is $11.7{\%}$, GMM is $13.38{\%}$. The 1D HMM have the bettor performance than PCA where there is no illumination changes. But the 1D HMM have worse performance than PCA where there is large illumination changes(${\delta}{\geq}40$). For the Pseudo 2D HMM, The best EER performance is observed regardless of the illumination changes.

A Study on Efficient Face Recognition using Pseudo 2D-HMM (Pseudo 2D-HMM을 이용한 효율적인 얼굴인식에 관한 연구)

  • Lee, Wu-Ju;Lim, Jeong-Hoon;Noh, Kyung-Seok;Seo, Hee-Kyung;Lee, Bae-Ho
    • Annual Conference of KIPS
    • /
    • 2003.11a
    • /
    • pp.493-496
    • /
    • 2003
  • 본 논문에서는 계산의 복잡성을 단순화하고, 얼굴영상에 대해 높은 얼굴 인식률을 얻기 위해 2D-HMM(Midden Markov Model) 얼굴인식 방법을 제안하고 실험하였다. 계산의 복잡성을 줄이기 위해 기존의 픽셀값 대신에 2D-DCT계수를 관측벡터로 사용함으로써 관측벡터의 크기와 인식 시스템의 복잡성을 줄일 수 있었다. 얼굴인식 시스템의 성능을 평가하기 위하여 Yale, ORL의 얼굴 데이터베이스에 대하여 기존의 얼굴인식 방법으로 널리 알려진 Eigenface 방법, LDA 방법과 본 논문에서 제안한 방법인 1D-HMM, 2D-HMM방법의 인식률을 비교 평가하였다. 실험결과 2D-HMM 방법의 인식률이 99.5%로 기존의 얼굴인식 방법들보다 우수한 성능을 나타냈다. 또한 일정 state수에 대해 mixture의 수가 증가할수록 인식결과가 좋아짐을 알 수 있었다.

  • PDF

Dynamic Synthesis of Pseudo 2D HMMs for Korean Characters in Key Character Recognition Tasks (키워드 인식을 위한 한글 Pseudo 2D HMM의 동적 합성 방법)

  • 조범준
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.6B
    • /
    • pp.820-827
    • /
    • 2001
  • 한글은 둘 또는 세 개의 자모가 사각형 영역 안에 적절히 배치된 구조로 되어 있다. 이와 같은 구성 방법에 따라 글자의 영상을 합성하고 이를 실시간에 Pseudo 2D HMM으로 변환하는 방법을 제안한다. 본 방법에 따라 실시간 합성된 모델과 추가의 필러(filler) 모델, 여백 모델을 문서 영상의 글자 영역에서 핵심어 검출에 적용하였다. 실험 결과 최소한의 설계 변수 조정으로도 오검출, 미검출률이 낮고 언어 모델 없이 숫자 89%, 한글 80%의 검출성능을 보였으며, 따라서 제안된 방법이 인쇄 문자 패턴의 실시간 모델링 및 키워드 검출에 효과가 있음을 보였다. 본 연구 결과는 내용 기반의 광학 문서 색인 등에 활용할 수 있다.

  • PDF

Two-Dimensional Hidden Markov Mesh Chain Algorithms for Image Dcoding (이차원 영상해석을 위한 은닉 마프코프 메쉬 체인 알고리즘)

  • Sin, Bong-Gi
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.6
    • /
    • pp.1852-1860
    • /
    • 2000
  • Distinct from the Markov random field or pseudo 2D HMM models for image analysis, this paper proposes a new model of 2D hidden Markov mesh chain(HMMM) model which subsumes the definitions of and the assumptions underlying the conventional HMM. The proposed model is a new theoretical realization of 2D HMM with the causality of top-down and left-right progression and the complete lattice constraint. These two conditions enable an efficient mesh decoding for model estimation and a recursive maximum likelihood estimation of model parameters. Those algorithms are developed in theoretical perspective and, in particular, the training algorithm, it is proved, attains the optimal set of parameters.

  • PDF

Study On the Robustness Of Four Different Face Authentication Methods Under Illumination Changes (얼굴인증 방법들의 조명변화에 대한 견인성 연구)

  • 고대영;천영하;김진영;이주헌
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.2036-2039
    • /
    • 2003
  • This paper focuses on the study of the robustness of face authentication methods under illumination changes. Four different face authentication methods are tried. These methods are as follows; Principal Component Analysis, Gaussian Mixture Models, 1-Dimensional Hidden Markov Models, 2-Dimensional Hidden Markov Models. Experiment results involving an artificial illumination change to face images are compared with each others. Face feature vector extraction method based on the 2-Dimensional Discrete Cosine Transform is used. Experiments to evaluate the above four different face authentication methods are carried out on the Olivetti Research Laboratory(ORL) face database. For the pseudo 2D HMM, the best EER (Equal Error Rate) performance is observed.

  • PDF