• Title/Summary/Keyword: Prymnesiophyte

Search Result 5, Processing Time 0.023 seconds

Integrated Phytoplankton Data of the west Pacific Sector of the Southern Ocean: 149-148 $^{\circ}E$ transect

  • Lee Hak Young;Cho In Sook;Greene Richard M.;Kim Jong Won
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.2 no.1
    • /
    • pp.21-28
    • /
    • 1998
  • A total of 94 taxa were identified from the Southern Ocean, 140-148 $^{\circ}E$ and 40-53 $^{\circ}S$, as an early austral summer phytoplankton. They were 53 diatoms, 37 dinoflagellates, 2 silicoflagellates, 1 prymnesiophyte, and 1 coccolithophorid. Integrated cell numbers of nanoplankton dominated microphytoplankton from 8 stations, especially from Subantarctic zone, but integrated biomass was lower than microphytoplankton. Integrated cell numbers of diatoms dominated dinoflagellates, coccolithophorids, and prymnesiophyte, but integrated biomass of microphytoplankton were dependent to the biomass of dinoflagellates except north of the Subtropical convergence zone and south of the Antractic convergence zone. Phytoplankton community changed across the fronts and 3 different communities were observed. Fronts seem to influence on the phytoplankton community from the west Pacific Sector of the Southern Ocean.

  • PDF

Structure of the Phytoplanktonic communities in Jeju Strait and Northern East China Sea and Dinoflagellate Blooms in Spring 2004: Analysis of Photosynthetic Pigments (봄철 제주해협과 동중국해 북부해역에서 식물플랑크톤의 광합성 색소분석을 이용한 군집 분포 특성과 dinoflagellate 적조)

  • Park, Mi-Ok;Kang, Sung-Won;Lee, Chung-Il;Choi, Tae-Seob;Lantoine, Francois
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.1
    • /
    • pp.27-41
    • /
    • 2008
  • Distribution characteristics of phytoplankton community were investigated by HPLC and flow cytometry in Jeju Strait and the Northern East China Sea (NECS) in May 2004, in order to understand the relationship between physical environmental factors and distribution pattern of phytoplankton communities. Based on temperature and salinity data, three distinct water masses were identified; warm and saline Tsushima Warm Current (TWC), which is flowing from northwest of Jeju Island, warm and low saline water at the center of Jeju Strait, which is originated from China Coastal Water (CCW) and relatively cold and high saline water originated from Yellow Sea at the bottom of the Jeju Strait. At Jeju Strait, less saline water (<33 psu) of 15 km width occupied surface layer up to 20 m which located at 20 km offshore and strong thermal front between warm and saline water and cold and less saline water was found in the middle of the Jeju Strait. Vertical transect of temperature and salinity at the NECS also showed that low saline (<33 psu) water occupied the upper 20 m layer and cold and saline water was present at the eastern part. Chl a was measured as $0.06{\sim}3.07\;{\mu}g/L$. Spring bloom of phytoplankton was recognized by the high concentrations of Chl a at the low saline water masses influenced by the CCW and subsurface chlorophyll maximum layer appeared between $20{\sim}30\;m$ depth, which was at thermocline depth or below. Abundances of Synechococcus and picoeukaryote were $0.2{\sim}9.5{\times}10^4\;cells/mL$ and $0.43{\sim}4.3{\times}10^4\;cells/mL$, respectively. Dinoflagellate, diatom and prymnesiophyte were major groups and minor groups were chlorophyte+prasinophyte, chrysophyte, cryptophyte and cyanophyte. Especially high abundance of dinoflagellate was identified by high concentration (>1\;{\mu}g/L$) of peridinin at the bottom of the thermocline, which showed an outbreak of red tide by high density of dinoflagellates. Abundances of picoeukaryote in Jeju Strait were about $5{\sim}10$ times higher than abundance measured in Kuroshio water and showed a good correlation with Chl b (Pras+Viola), which implies the most of population of picoeukaryote was composed of prasinophytes. Prochlorococcus was not detected at all, which suggests that Kuroshio Current did not directly influenced on the study area. Based on the strong negative correlations between biomass of phytoplankton (Chl a) and temperature+salinity, the primary production and biomass of phytoplankton in the study area were controlled by the nutrients supply from CCW.

Integrated Phytoplankton Data of the west Pacific Sector of the Southern Ocean: $140-148 ^{\circ}E$ transect

  • Hak Young Lee;In
    • Journal of Environmental Science International
    • /
    • v.2 no.1
    • /
    • pp.21-28
    • /
    • 1993
  • A total of 94 taxa were identified from the Southern Ocean, 140-148 。E and 40-53。S, as an early austral summer phytoplankton. They were 53 diatoms, 37 dinoflagellates, 2 silicoflagellates, 1 prymnesiophyte, and 1 coccolithophorid. Integrated cell numbers of nanoplankton dominated microphytoplankton from 8 stations, especially from Subantarctic zone, but integrated biomass was lower than microphytoplankton. Integrated cell numbers of diatoms dominated dinoflagellates, coccolithophorids, and pnrnnesiophyte, but integrated biomass of microphytoplankton were dependent to the biomass of dinoflagellates except north of the Subtropical convergence zone and south of the Antractic convergence sone. Phytoplankton community changed across the fronts and 3 different communities were observed. Fronts seem to influence on the phytoplankton community from the west Pacific Sector of the Southern Ocean.

  • PDF

HPLC method for the analysis of chlorophylls and carotenoids from marine phytoplankton

  • Park, Mi-Ok;Park, Jeom-Sook
    • Journal of the korean society of oceanography
    • /
    • v.32 no.1
    • /
    • pp.46-55
    • /
    • 1997
  • The quantitative determination of carotenoids, chlorophylls and their degradation products from marine phytoplankton was performed by reverse-phase high performance liquid chromatography (HPLC). Separated and quantified chlorophylls and their degraded products are chlorophyll a, b, c, chlorophyllide a, phaeophytin a, b and phaeophorbide a. Concentrations of six carotenoids including fucoxanthin, 19'-butanoyloxyfucoxanthin, 19'-hexanoyloxyfucoxan-thin, prasinoxanthin, alloxanthin, zoaxanthin/lutein were also determined from natural field samples by absorbance. Results of pigment analysis of field samples collected from the southern waters of the East Sea on October 8th, 1996 were reported. Concentration of chi a ranged from 7.2 to 180.4 ng/1. Concentration of chi b and chi c ranged from 22.7 to 53.7 ng/1 and from 3.3 to 58.5 ng/1, respectively. Significant concentrations of phaeophytin a, and chlorophyllide a were also detected at different depths. Fucoxanthin, 19'-hexanoyloxyfucoxanthin and zoaxanthin/lutein were the most abundant carotenoids and 19'-butanoyloxyfucoxanthin, prasinoxanthin and alloxanthin were also detected relatively at low concentrations. These results of pigment analyses suggest predominance of diatom, prymnesiophytes and cyanobacteria and presence of crysophyte, green algae (prasinophyte and prochlorophyte), and cryptophyte in the study area on October 8th, 1996, We report prymnesiophyte for the first time as an important biomass component of marine phytoplankton in the study area. Vertical profiles for the concentration changes of the major pigments were also given.

  • PDF

Lack of mixotrophy in three Karenia species and the prey spectrum of Karenia mikimotoi (Gymnodiniales, Dinophyceae)

  • Jin Hee Ok;Hae Jin Jeong;An Suk Lim;Hee Chang Kang;Ji Hyun You;Sang Ah Park;Se Hee Eom
    • ALGAE
    • /
    • v.38 no.1
    • /
    • pp.39-55
    • /
    • 2023
  • Exploring mixotrophy of dinoflagellate species is critical to understanding red-tide dynamics and dinoflagellate evolution. Some species in the dinoflagellate genus Karenia have caused harmful algal blooms. Among 10 Karenia species, the mixotrophic ability of only two species, Karenia mikimotoi and Karenia brevis, has been investigated. These species have been revealed to be mixotrophic; however, the mixotrophy of the other species should be explored. Moreover, although K. mikimotoi was previously known to be mixotrophic, only a few potential prey species have been tested. We explored the mixotrophic ability of Karenia bicuneiformis, Karenia papilionacea, and Karenia selliformis and the prey spectrum of K. mikimotoi by incubating them with 16 potential prey species, including a cyanobacterium, diatom, prymnesiophyte, prasinophyte, raphidophyte, cryptophytes, and dinoflagellates. Cells of K. bicuneiformis, K. papilionacea, and K. selliformis did not feed on any tested potential prey species, indicating a lack of mixotrophy. The present study newly discovered that K. mikimotoi was able to feed on the common cryptophyte Teleaulax amphioxeia. The phylogenetic tree based on the large subunit ribosomal DNA showed that the mixotrophic species K. mikimotoi and K. brevis belonged to the same clade, but K. bicuneiformis, K. papilionacea, and K. selliformis were divided into different clades. Therefore, the presence or lack of a mixotrophic ability in this genus may be partially related to genetic characterizations. The results of this study suggest that Karenia species are not all mixotrophic, varying from the results of previous studies.