• Title/Summary/Keyword: Prunus persica flesh extract

Search Result 3, Processing Time 0.016 seconds

Protective Effects of Prunus persica Flesh Extract (PPFE) on UV-Induced Oxidative Stress and Matrix Metalloproteinases Expression in Human Skin Cells

  • Park, Hyen-Joo;Park, Kwang-Kyun;Hwang, Jae-Kwan;Chung, Won-Yoon;Kim, Gi-Dae;Lee, Min-Ai;Lee, Sang-Kook
    • Natural Product Sciences
    • /
    • v.18 no.1
    • /
    • pp.52-59
    • /
    • 2012
  • In our continuous efforts to procure the active materials from natural products in the protective effects of oxidative stress or UV damage to skin cells we found the Prunus persica flesh extract (PPFE) is considerable to meet the demand to protect the skin damage. PPFE attenuated cell damage induced by hypoxanthine-xanthine oxidase in cultured human keratinocytes, indicating that PPFE has the potential of the scavenging effect of reactive oxygen species (ROS) in human skin cell. Moreover, PPFE significantly suppressed UVA-induced ROS production determined by the oxidation of 2,7-dichlorodihydrofluorescein diacetate (DCFH) using FACS analysis. Additional study revealed that UVA irradiation of HaCaT human keratinocytes increased the gelatinolytic activities of matrix metalloproteinase-2, and -9 (MMP-2, -9) and mRNA expression of MMP-9 analyzing by a real-time reverse transcriptase-polymerase chain reaction (RT-PCR), and these events were significantly suppressed by the treatment with PPFE. These results suggest that PPFE might be applicable as natural ingredients for skin antiaging agents via UV-induced ROS scavenging activity and suppression of MMP expression in the skin cells.

Inhibitory Effect of Prunus persica Flesh Extract (PPFE) on Melanogenesis through the Microphthalmia-associated Transcription Factor (MITF)-mediated Pathway

  • Park, Hyen-Joo;Park, Kwang-Kyun;Hwang, Jae-Kwan;Chung, Won-Yoon;Lee, Sang-Kook
    • Natural Product Sciences
    • /
    • v.17 no.1
    • /
    • pp.26-32
    • /
    • 2011
  • Novel tyrosinase inhibitors are important for pigmentation in the skin. Following extraction of tyrosinase inhibitors from edible vegetables or fruits, we found that the Prunus persica flesh extract (PPFE) exhibited potential inhibitory activity for melanogenesis. PPFE showed tyrosinase inhibitory activity in an enzymatic assay and PPFE also significantly inhibited the melanin formation in cultured mouse melan-a cells. Moreover, real-time RT-PCR analysis revealed that the inhibition of melanin production by PPFE was closely related to marked suppression of mRNA expression of tyrosinase and tyrosinase-related protein-1 and -2 (TRP-1 and TRP-2) in melan-a cells. Further investigation found that the modulation of tyrosinase expression by PPFE was associated with the transcriptional regulation of the microphthalmia-associated transcription factor (MITF). PPFE inhibited the promoter activity of MITF and suppressed MITF mRNA expression in melan-a cells. These results indicate that PPFE down-regulates melanogenesis-associated gene expression through MITF-mediated transcriptional regulation and these events might be related to the hypopigmentary effects of PPFE.

Inhibitory Effect of Ethyl Acetate Extract of White Peach Pericarp on Adipogenesis of 3T3-L1 Preadipocyte Cells

  • Park, Hong-Gyu;Kim, Jin-Moon;Kim, Jung-Mogg;Chung, Won-Yoon;Yoo, Yun-Jung;Cha, Jeong-Heon
    • Food Science and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.1327-1331
    • /
    • 2008
  • In order to determine whether peach contains compounds to regulate adipocyte differentiation, extracts of flesh/pericarp of yellow/white peach were prepared in water, ethyl acetate (EtOAc), or n-butanol solvent and determined for effects on adipocyte differentiation in C3H10T1/2 or 3T3-L1 cells. Interestingly, none of peach extracts has statistically significant stimulatory effect on the adipocyte differentiation in C3H10T1/2. Furthermore, the presence of EtOAc extract of white peach pericarp (WPP) was found to inhibit lipid accumulation in 3T3-L1 cells both by microscopic examination of Oil Red O-stained lipid droplets and by spectrophotometric quantification of extracted stain, indicating a significant inhibitory effect on adipocyte differentiation. The inhibition of lipid accumulation was accompanied by a significant decrease in the expression levels of adipocyte molecular markers-peroxisome proliferator-activated receptor $\gamma$, CAAT enhancer binding protein $\alpha$, and fatty acid-binding protein. Thus, this study determined that WPP EtOAc extract contains the inhibitory compound(s) on adipogenesis.