• 제목/요약/키워드: Pruning Search Space

검색결과 27건 처리시간 0.02초

한국어 주소 음성인식의 고속화를 위한 적응 프루닝 문턱치 알고리즘 (An Adaptive Pruning Threshold Algorithm for the Korean Address Speech Recognition)

  • 황철준;오세진;김범국;정호열;정현열
    • 한국음향학회지
    • /
    • 제20권7호
    • /
    • pp.55-62
    • /
    • 2001
  • 음성인식의 고속화를 위한 저자들에 의한 기존의 연구에서는 탐색이 진행함에 따라 시간방향의 탐색공간 문턱치를 가변적으로 적용하여 인식률의 저하없이 인식속도를 개선시켰다. 이 방법은 탐색 공간을 효과적으로 줄일 수는 있었으나 문턱치를 결정하기 위해서 여러 번의 사전 실험을 수행하여야 하는 번거러움이 있었다. 이러한 문제점을 해결하기 위하여 본 논문에서는 이전 탐색구간에 대한 최대우도와 후보들의 우도를 이용하여 현재 탐색구간의 문턱치를 탐색이 진행하는 과정에서 자동적으로 구하는 적응 프루닝 문턱치 알고리즘을 제안하였다. 제안한 알고리즘의 유효성을 확인하기 위해 국내 행정단위 시 (도), 구 (군), 동 (읍, 면), 번지를 구성하는 단어로 구성된 주소 인식 시스템에 적용하여 기존의 방법과 제안한 방법을 비교 검토하였다. 인식실험 결과, 연결단어 인식률 96.0%, 단어 인식률이 98.7%인 경우를 기준으로 하였을 때 제안된 방법이 기존의 고정 프루닝과 가변 프루닝 문턱치에 비하여 인식률 저하없이 각각 14.4%와 9.14%의 탐색 공간을 상대적으로 줄일 수 있어 제안된 방법의 유효성을 확인할 수 있었다.

  • PDF

언어 모델 네트워크에 기반한 대어휘 연속 음성 인식 (Large Vocabulary Continuous Speech Recognition Based on Language Model Network)

  • 안동훈;정민화
    • 한국음향학회지
    • /
    • 제21권6호
    • /
    • pp.543-551
    • /
    • 2002
  • 이 논문에서는 20,000 단어급의 대어휘를 대상으로 실시간 연속음성 인식을 수행할 수 있는 탐색 방법을 제안한다. 기본적인 탐색 방법은 토큰 전파 방식의 비터비 (Viterbi) 디코딩 알고리듬을 이용한 1 패스로 구성된다. 언어 모델 네트워크를 도입하여 다양한 언어 모델들을 일관된 탐색 공간으로 구성하도록 하였으며, 프루닝(pruning) 단계에서 살아남은 토큰들로부터 동적으로 탐색 공간을 재구성하였다. 용이한 후처리를 위해 워드그래프 및 N개의 최적 문장을 출력할 수 있도록 비터비 알고리듬을 수정하였다. 이렇게 구성된 디코더는 20,000 단어급 데이터 베이스에 대해 테스트하였으며 인식률 및 RTF측면에서 평가되었다.

셋-프루닝 이진 검색 트리를 이용한 계층적 패킷 분류 알고리즘 (A Hierarchical Packet Classification Algorithm Using Set-Pruning Binary Search Tree)

  • 이수현;임혜숙
    • 한국정보과학회논문지:정보통신
    • /
    • 제35권6호
    • /
    • pp.482-496
    • /
    • 2008
  • 인터넷 라우터에서의 패킷 분류는 들어오는 모든 패킷에 대하여 패킷이 입력되는 속도와 같은 속도로 수행되어야 하는데, 여러 헤더 필드에 대해 다차원 검색을 수행하여야 하므로, 라우터 설계에 있어 가장 어려운 문제중의 하나이다. 계층적 패킷 분류 구조는 하나의 필드 검색이 끝날 때마다 검색 영역이 현저하게 줄어듦으로 매우 효율적이다. 그러나 계층적 구조들은 빈 노드와 역추적이라는 두가지 문제를 내재하고 있다. 본 논문에서는 두가지 문제를 동시에 해결하는 새로운 계층적 패킷분류 구조를 제안한다. 역추적 문제는 셋-프루닝 기법을 이용하여 해결하였으며, 이진 검색트리를 적용하여 빈노드를 제거하였다. 시뮬레이션 결과 제안된 알고리즘은 메모리 요구량의 증가 없이 검색 성능을 현저히 향상시킴을 확인하였다. 또한 셋-프루닝에 있어 제한된 룰의 복사를 적용하는 최적화 기법을 제안한다.

효율적인 Pruning 기법을 이용한 부분 영상 검색 (Partial Image Retrieval Using an Efficient Pruning Method)

  • 오석진;오상욱;김정림;문영식;설상훈
    • 방송공학회논문지
    • /
    • 제7권2호
    • /
    • pp.145-152
    • /
    • 2002
  • 디지털 기술의 급속한 발전에 힘입어 사용자에게 유용한 디지털 영상들이 지수적으로 증가함에 따라, 내용 기반 영상 검색(CBIR ; Content-based Image Retrieval)은 가장 활발한 연구 분야 중 하나가 되었다 다양한 영상 검색 방법은 입력 질의 영상이 주어졌을 때, 질의와 유사한 영상들이 칼라(color)나 질감(texture) 같은 저 수준 특징을 기반으로 영상 데이터베이스에서 검색되도록 제안되어져 왔다. 그러나, 기존 검색 방법의 대부분은 부분 정합에 필요한 복잡도(complexity) 때문에 데이터베이스 내 전체 영상의 부분 영상을 입력 질의 영상으로 했을 경우를 고려하지 않았다. 이 논문에서 우리는 두 영상 사이의 칼라 히스토그램 관계를 이용함으로써 부분 영상 정합에 대한 효율적인 방법을 제시한다. 제안된 접근 방법은 두 단계로 구성되어 있다. 첫 번째 단계는 검색 공간을 pruning시키는 것이고 두 번째 단계는 부분 영상 정합을 통해 후보 영상들의 순위를 정하는 블록 기반 검색을 수행한다. 실험 결과는 pruning없이 부분 영상 정합만 사용하여 검색했을 때 시스템의 응답 시간이 높다고 가정을 하고 제안된 알고리즘의 실현 가능성을 보여준다.

다차원 인덱싱 구조에서의 k-근접객체질의 처리 방안 (k-Nearest Neighbor Query Processing in Multi-Dimensional Indexing Structures)

  • 김병곤;오성균
    • 한국컴퓨터정보학회논문지
    • /
    • 제10권1호
    • /
    • pp.85-92
    • /
    • 2005
  • 최근에 데이터베이스 응용분야에서 내용기반의 검색이 가능한 이미지 데이터와 같은 다차원 정보 처리에 대한 관심이 고조되고 있다. 따라서 다차원 데이터를 효율적으로 저장하고. 사용자가 원하는 질의 결과를 신속히 제공하는 것이 중요한 연구분야이다 다차원의 데이터에 대한 질의는 대표적으로 영역질의 (Range query)와 최근접객체검색질의(Nearest Neighbor Query)로 나눌 수 있다. 본 논문에서는 $R^*-tree$와 같은 다차원의 인덱싱 구조에서 효율적이고 빠른 k-근접객체검색질의를 수행하기 위한 방안을 제시한다. k-근접객체검색질의는 질의 객체로부터 가장 근접한 k개의 객체를 반환하는 것이다. 본 논문은 이를 위하여 가지치기(Pruning) 기법을 이용하여 검색 공간을 줄이는 방법을 사용하였다. 실험을 통하여 제안된 전략의 오버헤드와 이득을 보였으며, 마지막으로 가장 효율적인 전략의 사용을 제안하였다.

  • PDF

패킷 분류를 위한 스마트 셋-프루닝 트라이 (A Smart Set-Pruning Trie for Packet Classification)

  • 민세원;이나라;임혜숙
    • 한국통신학회논문지
    • /
    • 제36권11B호
    • /
    • pp.1285-1296
    • /
    • 2011
  • 패킷분류는 라우터의 가장 기본적이면서도 중요한 기능 중의 하나이며, 실시간 전송을 요구하는 새로운 인터넷 응용 프로그램의 등장과 더불어 그 중요성이 더욱 커지고 있다. 패킷분류는 입력 패킷에 대하여 선속도로 이루어져야 하며, 여러 헤더 필드에 대해 다차원 검색을 수행해야 하기 때문에 라우터 설계의 어려운 문제 중에 하나이다. 고속의 패킷분류를 제공하기 위한 다양한 패킷분류 알고리즘이 제안되어 왔으며, 그 중 계층적 접근 방식을 사용한 알고리즘은 하나의 필드에 대하여 검색이 수행될 때마다 많은 검색 영역이 제거되기 때문에 효율적이다. 그러나 계층적 구조는 역추적이라는 문제를 내재하고 있으며, 이를 해결하기 위해 사용되는 셋-프루닝 트라이나그리드-오브-트라이는 지나치게 많은 노드 복사를 야기하거나, 선-계산이라는 복잡한 과정을 요구한다. 본 논문에서는 셋-프루닝 하위 트라이의 간단한 합병을 통하여 복사되는 노드의 개수를 줄일 수 있는 스마트 셋-프루닝 구조를 제안한다. 시뮬레이션 결과 제안된 구조는 셋-프루닝 트라이와 비교하여 복사되는 노드 수 및 룰 수가 2-8% 줄어듦을 확인하였다.

A Data Mining Approach for Selecting Bitmap Join Indices

  • Bellatreche, Ladjel;Missaoui, Rokia;Necir, Hamid;Drias, Habiba
    • Journal of Computing Science and Engineering
    • /
    • 제1권2호
    • /
    • pp.177-194
    • /
    • 2007
  • Index selection is one of the most important decisions to take in the physical design of relational data warehouses. Indices reduce significantly the cost of processing complex OLAP queries, but require storage cost and induce maintenance overhead. Two main types of indices are available: mono-attribute indices (e.g., B-tree, bitmap, hash, etc.) and multi-attribute indices (join indices, bitmap join indices). To optimize star join queries characterized by joins between a large fact table and multiple dimension tables and selections on dimension tables, bitmap join indices are well adapted. They require less storage cost due to their binary representation. However, selecting these indices is a difficult task due to the exponential number of candidate attributes to be indexed. Most of approaches for index selection follow two main steps: (1) pruning the search space (i.e., reducing the number of candidate attributes) and (2) selecting indices using the pruned search space. In this paper, we first propose a data mining driven approach to prune the search space of bitmap join index selection problem. As opposed to an existing our technique that only uses frequency of attributes in queries as a pruning metric, our technique uses not only frequencies, but also other parameters such as the size of dimension tables involved in the indexing process, size of each dimension tuple, and page size on disk. We then define a greedy algorithm to select bitmap join indices that minimize processing cost and verify storage constraint. Finally, in order to evaluate the efficiency of our approach, we compare it with some existing techniques.

패킷 분류를 위한 블룸 필터 이용 튜플 제거 알고리즘 (Tuple Pruning Using Bloom Filter for Packet Classification)

  • 김소연;임혜숙
    • 한국정보과학회논문지:정보통신
    • /
    • 제37권3호
    • /
    • pp.175-186
    • /
    • 2010
  • 다양한 어플리케이션의 등장과 인터넷 사용자의 급속한 성장으로 인하여, 인터넷 라우터는 패킷이 입력되는 속도와 같은 속도로 패킷 분류작업을 수행하여 패킷의 클래스에 따른 품질 보장을 제공할 것이 요구되고 있다. 패킷 분류란 라우터에 입력된 패킷의 헤더가 가지고 있는 여러 개의 필드에 대해 다차원 검색을 수행하여, 미리 정의된 룰과 일치하는 결과 가운데 최우선순위를 갖는 룰을 찾아내는 과정을 말한다. 빠른 패킷 분류를 위하여 다양한 패킷 분류 알고리즘이 제안되어오고 있으며, 튜플 공간 제거(tuple space pruning) 알고리즘은 일치 가능한 룰을 갖는 튜플들만을 해싱을 사용하여 검색함으로 빠른 검색 성능을 제공한다. 블룸 필터(Bloom filter)는 특정 집합에 속하는 원소들의 멤버쉽에 관한 정보를 간단한 비트-벡터로 표현하는 데이터 구조로서, 특정 입력 값이 집합에 속한 원소인지를 알려주는 선-필터(pre-filter)로 사용된다. 본 논문에서는 블룸 필터를 이용하여 일치 가능성이 없는 튜플을 효율적으로 제거하는 새로운 튜플 제거 알고리즘을 제안한다. 실제 라우터에서 사용되는 룰 셋과 비슷한 특성을 갖는다고 알려진 데이터 베이스에 대한 성능 비교를 통하여, 본 논문에서 제안하는 구조가 패킷 분류 성능 및 메모리 사용량에 있어서 기존의 튜플공간 제거 알고리즘과 비교하여 월등히 우수함을 보았다.

효과적인 이미지 브라우징을 위한 M-트리 기반의 인덱싱 방법 (M-tree based Indexing Method for Effective Image Browsing)

  • 유정수;낭종호
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제16권4호
    • /
    • pp.442-446
    • /
    • 2010
  • 본 논문에서는 대량의 사진 데이터베이스에 대한 효과적인 사진 검색을 위하여 브라우징을 지원하는 인덱싱 방법을 제안하였다. 제안한 방법은 대표적인 거리 공간 인덱싱 방법인 M-트리를 기본 구조로 하였다. 그러나 M-트리는 pruning을 통한 검색의 효율성에 초점을 맞추었으며 브라우징을 직접적으로 고려하지 않는다. 따라서 본 논문에서는 M-트리의 노드 선택 방법, 노드 분할 방법 및 노드 분할 조건을 브라우징에도 적합하도록 변경하였다. 제안한 방법을 적용하여 실험한 결과 노드 응집도와 클러스터링 정확도에서 각각 2배와 1.5배의 향상을 나타내었으며, 검색 성능도 약 2배정도 빨라지는 효과를 확인하였다.

내용기반 검색을 위한 SOMk-NN탐색 알고리즘 (SOMk-NN Search Algorithm for Content-Based Retrieval)

  • 오군석;김판구
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제29권5호
    • /
    • pp.358-366
    • /
    • 2002
  • 특징정보를 기반으로 한 유사 이미지 검색은 이미지 데이타베이스에 있어서 중요한 과제의 하나이다. 이미지 데이타의 특징정보는 각 이미지를 식별하는데 유용한 정보이다. 본 논문에서는 자기 조직화 맵 기반의 고속 k-NN 탐색 알고리즘을 제안한다. 자기 조직화 맵은 고차원 특징벡터를 2차원 공간에 맵핑하여 위상특징 맵을 생성한다. 위상특징 맵은 입력 데이타의 특징공간과 상호관계(유사성)를 가지고 있으며, 인접노드에 서로 유사한 특징벡터가 클러스터링된다. 그러므로 위상특징 맵상의 각 노드에는 노드 벡터와 각 노드벡터에 가장 가까운 유사 이미지가 분류된다. 이러한 자기 조직화 맵에 의한 유사 이미지 분류결과에 대하여 k-NV 탐색을 구현하기 위하여, (1) 위상특징 맵에 대한 접근방법, (2) 고속탐색을 위한 pruning strategy의 적용을 실현하였다. 본 연구에서는 실험을 통하여 실제 이미지로부터 추출한 색상 특징을 사용하여 제안한 알고리즘의 성능을 평가함으로써 유사 이미지 검색에 유효한 견과를 얻을 수 있었다.