• Title/Summary/Keyword: Proxy Re-Encryptions

Search Result 2, Processing Time 0.016 seconds

A Secure Health Data Transmission Protocol Using Identity-Based Proxy Re-Encryption in Remote Healthcare Monitoring System (원격건강정보 모니터링 시스템에서 신원기반 프록시 재암호화 기법을 이용한 건강정보 전송 보안 프로토콜)

  • Noh, Si-Wan;Park, Youngho;Rhee, Kyung-Hyune
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.6 no.4
    • /
    • pp.197-202
    • /
    • 2017
  • The remote healthcare monitoring system enables a doctor to diagnose and monitor patient's health problem from a distance. Previous researches have focused on key establishment method between a patient and a particular doctor to solve personal health information disclosure problem in data transmission process. However, when considering a misdiagnosis of doctor, the result of a diagnosis by a many doctors is more reliable. In previous work, in order to select multiple doctors, patient should generate shared key for each chosen doctor and perform many times encryptions. Therefore, in this paper, we propose a secure data transmission protocol for receiving diagnosis from multiple doctors using identity-based proxy re-encryption scheme. In proposed protocol, a patient don't need key management work for session key. Also, monitoring server performs re-encryption process on behalf of patient. So, we can reduce computational burden of patient in previous work.

Efficient Outsourced Multiparty Computations Based on Partially Homomorphic Encryption (부분동형암호와 외부서버를 이용한 효율적인 다자간 연산 기법)

  • Eun, Hasoo;Ubaidullah, Ubaidullah;Oh, Heekuck
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.27 no.3
    • /
    • pp.477-487
    • /
    • 2017
  • Multiparty computation (MPC) is a computation technique where many participants provide their data and jointly compute operations to get a computation result. Earlier MPC protocols were mostly depended on communication between the users. Several schemes have been presented that mainly work by delegating operations to two non-colluding servers. Peter et al. propose a protocol that perfectly eliminates the need of users' participation during the whole computation process. However, the drawback of their scheme is the excessive dependence on the server communication. To cater this issue, we propose a protocol that reduce server communication overhead using the proxy re-encryption (PRE). Recently, some authors have put forward their efforts based on the PRE. However, these schemes do not achieve the desired goals and suffer from attacks that are based on the collusion between users and server. This paper, first presents a comprehensive analysis of the existing schemes and then proposes a secure and efficient MPC protocol. The proposed protocol completely eliminates the need of users' participation, incurs less communication overhead and does not need to solve the discrete logarithm problem (DLP) in order to get the computation results.