• Title/Summary/Keyword: Proximity-based Gesture Recognition

Search Result 2, Processing Time 0.016 seconds

Implementation of Non-Contact Gesture Recognition System Using Proximity-based Sensors

  • Lee, Kwangjae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.3
    • /
    • pp.106-111
    • /
    • 2020
  • In this paper, we propose the non-contact gesture recognition system and algorithm using proximity-based sensors. The system uses four IR receiving photodiode embedded on a single chip and an IR LED for small area. The goal of this paper is to use the proposed algorithm to solve the problem associated with bringing the four IR receivers close to each other and to implement a gesture sensor capable of recognizing eight directional gestures from a distance of 10cm and above. The proposed system was implemented on a FPGA board using Verilog HDL with Android host board. As a result of the implementation, a 2-D swipe gesture of fingers and palms of 3cm and 15cm width was recognized, and a recognition rate of more than 97% was achieved under various conditions. The proposed system is a low-power and non-contact HMI system that recognizes a simple but accurate motion. It can be used as an auxiliary interface to use simple functions such as calls, music, and games for portable devices using batteries.

Hand Gesture Recognition Using an Infrared Proximity Sensor Array

  • Batchuluun, Ganbayar;Odgerel, Bayanmunkh;Lee, Chang Hoon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.3
    • /
    • pp.186-191
    • /
    • 2015
  • Hand gesture is the most common tool used to interact with and control various electronic devices. In this paper, we propose a novel hand gesture recognition method using fuzzy logic based classification with a new type of sensor array. In some cases, feature patterns of hand gesture signals cannot be uniquely distinguished and recognized when people perform the same gesture in different ways. Moreover, differences in the hand shape and skeletal articulation of the arm influence to the process. Manifold features were extracted, and efficient features, which make gestures distinguishable, were selected. However, there exist similar feature patterns across different hand gestures, and fuzzy logic is applied to classify them. Fuzzy rules are defined based on the many feature patterns of the input signal. An adaptive neural fuzzy inference system was used to generate fuzzy rules automatically for classifying hand gestures using low number of feature patterns as input. In addition, emotion expression was conducted after the hand gesture recognition for resultant human-robot interaction. Our proposed method was tested with many hand gesture datasets and validated with different evaluation metrics. Experimental results show that our method detects more hand gestures as compared to the other existing methods with robust hand gesture recognition and corresponding emotion expressions, in real time.