• 제목/요약/키워드: Proximal tubular epithelial cell

검색결과 23건 처리시간 0.025초

Effect of Baicalein on t-Butylhydroperoxide-Induced Cell Injury in Renal Tubular Epithelial Cells

  • Soon-Bee Jung
    • 대한의생명과학회지
    • /
    • 제9권4호
    • /
    • pp.189-193
    • /
    • 2003
  • This study was undertaken to investigate the effect of baicalein, a major flavone component of Scutellaria balicalensis Georgi, on oxidant-induced cell injury in renal epithelial cells. Opossum kidney cells, an established proximal tubular epithelial cells, were used as a cell model of renal epithelial cells and t-butylhydroperoxide (tBHP) as an oxidant drug model. Cell viability was measured by MTT assay and lipid peroxidation was estimated by measuring the content of malondialdehyde, a product of lipid peroxidation. Exposure of cells to tBHP caused cell death and its effect was dose-dependent over concentration range of 0.1~1.0 mM. When cells were exposed to tBHP in the presence of various concentrations (0.1~10 $\mu$M) of baicalein, tBHP-induced cell death was prevented with a manner dependent of baicalein concentration. tBHP induced A TP depletion, which was significantly prevented by baicalein. Similarly, tBHP-induced DNA damage was prevented by baicalein. tBHP produced a marked increase in lipid peroxidation and its effect was completely inhibited by baicalein. These results indue ate that tBHP induces cell injury through a lipid peroxidation-dependent mechanism in renal epithelial cells, and baicalein prevented oxidant-induced cell injury via antioxidant action inhibiting lipid peroxidation. In addition, these results suggest that baicalein may be a candidate for development of drugs which are effective in preventing and treating renal diseases.

  • PDF

Ceramide Induces Cell Death through an ERK-dependent Mitochondrial Apoptotic Pathway in Renal Epithelial Cells

  • Jung, Soon-Hee
    • 대한임상검사과학회지
    • /
    • 제42권1호
    • /
    • pp.46-54
    • /
    • 2010
  • Ceramide induces cell death in a variety of cell types however, the underlying molecular mechanisms related to renal epithelial cells remain unclear. The present study was undertaken to determine the role of extracellular signal-regulated protein kinase (ERK) in ceramide-induced cell death in renal epithelial cells. An established renal proximal tubular cell line of opossum kidney (OK) cells was used for this research. Ceramide induced apoptotic cell death in these cells. Western blot analysis showed that ceramide induced activation of ERK. The ERK activation and cell death induced by ceramide were prevented by the ERK inhibitor PD98059. Ceramide caused cytochrome C release from mitochondria into the cytosol as well as activation of caspase-3. Both effects were prevented by PD98059. The ceramide-induced cell death was also prevented by a caspase inhibitor. These results suggest that ceramide induces cell death through an ERK-dependent mitochondrial apoptotic pathway in OK cells.

  • PDF

Paricalcitol attenuates indoxyl sulfate-induced apoptosis through the inhibition of MAPK, Akt, and NF-κB activation in HK-2 cells

  • Park, Jung Sun;Choi, Hoon In;Bae, Eun Hui;Ma, Seong Kwon;Kim, Soo Wan
    • The Korean journal of internal medicine
    • /
    • 제34권1호
    • /
    • pp.146-155
    • /
    • 2019
  • Background/Aims: Indoxyl sulfate (IS) is a uremic toxin and an important causative factor in the progression of chronic kidney disease. Recently, paricalcitol (19-nor-1,25-dihydroxyvitamin D2) was shown to exhibit protective effects in kidney injury. Here, we investigated the effects of paricalcitol treatment on IS-induced renal tubular injury. Methods: The fluorescent dye 2',7'-dichlorofluorescein diacetate was used to measure intracellular reactive oxygen species (ROS) following IS administration in human renal proximal tubular epithelial (HK-2) cells. The effects of IS on cell viability were determined using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays and levels of apoptosis-related proteins (Bcl-2-associated protein X [Bax] and B-cell lymphoma 2 [Bcl-2]), nuclear $factor-{\kappa}B$ ($NF-{\kappa}B$) p65, and phosphorylation of mitogen-activated protein kinase (MAPK) and protein kinase B (Akt) were determined by semiquantitative immunoblotting. The promoter activity of $NF-{\kappa}B$ was measured by luciferase assays and apoptosis was determined by f low cytometry of cells stained with f luorescein isothiocyanate-conjugated Annexin V protein. Results: IS treatment increased ROS production, decreased cell viability and induced apoptosis in HK-2 cells. IS treatment increased the expression of apoptosis-related protein Bax, decreased Bcl-2 expression, and activated phosphorylation of MAPK, $NF-{\kappa}B$ p65, and Akt. In contrast, paricalcitol treatment decreased Bax expression, increased Bcl-2 expression, and inhibited phosphorylation of MAPK, $NF-{\kappa}B$ p65, and Akt in HK-2 cells. $NF-{\kappa}B$ promoter activity was increased following IS, administration and was counteracted by pretreatment with paricalcitol. Additionally, flow cytometry analysis revealed that IS-induced apoptosis was attenuated by paricalcitol treatment, which resulted in decreased numbers of fluorescein isothiocyanate-conjugated Annexin V positive cells. Conclusions: Treatment with paricalcitol inhibited IS-induced apoptosis by regulating MAPK, $NF-{\kappa}B$, and Akt signaling pathway in HK-2 cells.

Effect of Cisplatin on $Na^+/H^+$ Antiport in the OK Renal Epithelial Cell Line

  • Kim, Jee-Yeun;Park, Yang-Saeng
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제2권1호
    • /
    • pp.69-76
    • /
    • 1998
  • Cis-diamminedichloroplatinum II (cisplatin), an effective antitumor agent, induces acute renal failure by unknown mechanisms. To investigate direct toxic effects of cisplatin in the renal proximal tubular transport system, OK cell line was selected as a cell model and $Na^+/H^+$ antiport activity was evaluated during a course of cisplatin treatment. The cells grown to confluence were treated with cisplatin for 1 hour, washed, and incubated for up to 48 hours. At appropriate intervals, cells were examined for $Na^+/H^+$ antiport activity by measuring the recovery of intracellular pH (pHi) after acid loading. Cisplatin of less than 50 ${\mu}M$ induced no significant changes in cell viability in 24 hours, but it decreased the viability markedly after 48 hours. In cells exposed to 50 ${\mu}M$ cisplatin for 24 hours, the $Na^+-dependent$ pHi recovery (i.e., $Na^+/H^+$ antiport) was drastically inhibited with no changes in the $Na^+-independent$ recovery. Kinetic analysis of the $Na^+-dependent$ pHi recovery indicated that the Vmax was reduced, but the apparent Km was not altered. The cellular $Na^+$ and $K^+$ contents determined immediately before the transport measurement appeared to be similar in the control and cisplatin group, thus, the driving force for $Na^+-coupled$ transport was not different. These results indicate that cisplatin exposure impairs the $Na^+/H^+$ antiport capacity in OK cells. It is, therefore, possible that in patients treated with a high dose of cisplatin, proximal tubular mechanism for proton secretion (hence $HCO_3^-$ reabsorption) could be attenuated, leading to a metabolic acidosis (proximal renal tubular acidosis).

  • PDF

Melatonin Attenuates Mitochondrial Damage in Aristolochic Acid-Induced Acute Kidney Injury

  • Jian Sun;Jinjin Pan;Qinlong Liu;Jizhong Cheng;Qing Tang;Yuke Ji;Ke Cheng;Rui wang;Liang Liu;Dingyou Wang;Na Wu;Xu Zheng;Junxia Li;Xueyan Zhang;Zhilong Zhu;Yanchun Ding;Feng Zheng;Jia Li;Ying Zhang;Yuhui Yuan
    • Biomolecules & Therapeutics
    • /
    • 제31권1호
    • /
    • pp.97-107
    • /
    • 2023
  • Aristolochic acid (AA), extracted from Aristolochiaceae plants, plays an essential role in traditional herbal medicines and is used for different diseases. However, AA has been found to be nephrotoxic and is known to cause aristolochic acid nephropathy (AAN). AA-induced acute kidney injury (AKI) is a syndrome in AAN with a high morbidity that manifests mitochondrial damage as a key part of its pathological progression. Melatonin primarily serves as a mitochondria-targeted antioxidant. However, its mitochondrial protective role in AA-induced AKI is barely reported. In this study, mice were administrated 2.5 mg/kg AA to induce AKI. Melatonin reduced the increase in Upro and Scr and attenuated the necrosis and atrophy of renal proximal tubules in mice exposed to AA. Melatonin suppressed ROS generation, MDA levels and iNOS expression and increased SOD activities in vivo and in vitro. Intriguingly, the in vivo study revealed that melatonin decreased mitochondrial fragmentation in renal proximal tubular cells and increased ATP levels in kidney tissues in response to AA. In vitro, melatonin restored the mitochondrial membrane potential (MMP) in NRK-52E and HK-2 cells and led to an elevation in ATP levels. Confocal immunofluorescence data showed that puncta containing Mito-tracker and GFP-LC3A/B were reduced, thereby impeding the mitophagy of tubular epithelial cells. Furthermore, melatonin decreased LC3A/B-II expression and increased p62 expression. The apoptosis of tubular epithelial cells induced by AA was decreased. Therefore, our findings revealed that melatonin could prevent AA-induced AKI by attenuating mitochondrial damage, which may provide a potential therapeutic method for renal AA toxicity.

Cisplatin-induced Alterations of $Na^+$-dependent Phosphate Uptake in Renal Epithelial Cells

  • Lee, Sung-Ju;Kwon, Chae-Hwa;Kim, Yong-Keun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제11권2호
    • /
    • pp.71-77
    • /
    • 2007
  • Cisplatin treatment increases the excretion of inorganic phosphate in vivo. However, the mechanism by which cisplatin reduces phosphate uptake through renal proximal tubular cells has not yet been elucidated. We examined the effect of cisplatin on $Na^+$-dependent phosphate uptake in opossum kidney (OK) cells, an established proximal tubular cell line. Cells were exposed to cisplatin for an appropriate time period and phosphate uptake was measured using $[^{32}P]$-phosphate. Changes in the number of phosphate transporter in membranes were evaluated by kinetic analysis, $[^{14}C]$phosphonoformic acid binding, and Western blot analysis. Cisplatin inhibited phosphate uptake in a time- and dose-dependent manner, and also the $Na^+$-dependent uptake without altering $Na^+$-independent uptake. The cisplatin inhibition was not affected by the hydrogen peroxide scavenger catalase, but completely prevented by the hydroxyl radical scavenger dimethylthiourea. Antioxidants were ineffective in preventing the cisplatin-induced inhibition of phosphate uptake. Kinetic analysis indicated that cisplatin decreased Vmax of $Na^+$-dependent phosphate uptake without any change in the Km value. $Na^+$-dependent phosphonoformic acid binding was decreased by cisplatin treatment. Western blot analysis showed that cisplatin caused degradation of $Na^+$-dependent phosphate transporter protein. Taken together, these data suggest that cisplatin inhibits phosphate transport in renal proximal tubular cells through the reduction in the number of functional phosphate transport units. Such effects of cisplatin are mediated by production of hydroxyl radicals.

와송약침액이 Oxidant에 의한 신장세포손상에 미치는 영향 (Beneficial effect of Orostachys japonicus A. berger herbal acupuncture on oxidant-induced cell injury in renal epithelial cell)

  • 박상원;김철홍;윤현민;장경전;안창범;송춘호
    • Korean Journal of Acupuncture
    • /
    • 제24권1호
    • /
    • pp.171-187
    • /
    • 2007
  • Objectives : This study was performed to determine if Orostachys japonicus A. Berger herbal acupuncture (OjB) provides the protective effect against the loss of cell viability and DNA damage induced by oxidant in renal proximal tubular cells. Methods : The cell viability was evaluated by a MTT reduction assay and DNA damage was estimated by measuring double stranded DNA breaks in opossum kidney (OK) cells, an established proximal tubular cell line. Lipid peroxidation was determined by measuring malondialdehyde (MDA), a product of lipid peroxidation. Results : H2O2 increased the loss of cell viability in a time-dependent manner, which were prevented by 0.1% OjB. The protective effect of OjB was dose-dependent over concentration range of 0.05-0.5%. H2O2 caused ATP depletion and DNA damage, which were prevented by OjB and the hydrogen peroxide scavenger catalase. The loss of cell viability by H2O2 was not affected by the antioxidant DPPD, but lipid peroxidation by the oxidant was completely inhibited by DPPD. Generation of superoxide and H2O2 in neutrophils activated by phorbol-12,13-dibutyrate was inhibited by OjB in a dose-dependent manner. OjB inhibited generation of H2O2 in OK cells treated with antimycin A and exerted a direct H2O2 scavenging effect. Exposure of OK cells to 1 mM tBHP caused a significant depletion of glutathione which was prevented by OjB. OjB accelerated the recovery in cells cultured for 20 hr in normal medium without oxidant following oxidative stress. Conclusions : These results suggest that OjB exerts the protective effect against oxidant-induced cell injury and its protective effect was resulted from radical scavenging and antioxidant activities.

  • PDF

Effect of Cisplatin on Sodium-Dependent Hexose Transport in LLC-$PK_1$ Renal Epithelial Cells

  • Lee, Suk-Kyu;Kim, Jee-Yeun;Yu, Tai-Hyun;Kim, Kyoung-Ryong;Kim, Kwang-Hyuk;Park, Yang-Saeng
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제1권1호
    • /
    • pp.35-43
    • /
    • 1997
  • Cis-dichlorodiammine platin${\mu}M$II (Cisplatin), an effective chemotherapeutic agent, induces acute renal failure by unknown mechanisms. To investigate direct toxic effects of cisplatin on the renal proximal tubular transport system, LLC-$PK_1$ cell line was selected as a cell model and the sugar transport activity was evaluated during a course of cisplatin treatment. Cells grown to confluence were treated with cisplatin for 60 min, washed, and then incubated for up to 5 days. At appropriate intervals, cells were tested for sugar transport activity using ${\alpha}-methyl-D-[^{14}C]glucopyranoside$ (AMG) as a model substrate. In cells treated with 100 ${\mu}M$ cisplatin, the AMG uptake was progressively impaired after 3 days. The viability of cells was not substantially changed with cisplatin of less than 100 ${\mu}M$, but it decreased markedly with 150 and 200 ${\mu}M$. In cisplatin-treated cells, the $Na^+$ -dependent AMG uptake was drastically inhibited with no change in the $Na^+$ -independent uptake. Kinetic analysis indicated that Vmax was suppressed, but Km was not altered. The $Na^+$ -dependent phlorizin binding was also decreased in cisplatin-treated cells. However, the AMG efflux from preloaded cells was not apparently retarded by cisplatin treatment. These data indicate that the cisplatin treatment impairs $Na^+$ -hexose cotransporters in LLC-$PK_1$ cells and suggest strongly that defects in transporter function at the luminal plasma membrane of the proximal tubular cells constitute an important pathogenic mechanism of cisplatin nephrotoxicity.

  • PDF

Paricalcitol attenuates lipopolysaccharide-induced inflammation and apoptosis in proximal tubular cells through the prostaglandin E2 receptor EP4

  • Hong, Yu Ah;Yang, Keum Jin;Jung, So Young;Chang, Yoon Kyung;Park, Cheol Whee;Yang, Chul Woo;Kim, Suk Young;Hwang, Hyeon Seok
    • Kidney Research and Clinical Practice
    • /
    • 제36권2호
    • /
    • pp.145-157
    • /
    • 2017
  • Background: Vitamin D is considered to exert a protective effect on various renal diseases but its underlying molecular mechanism remains poorly understood. This study aimed to determine whether paricalcitol attenuates inflammation and apoptosis during lipopolysaccharide (LPS)-induced renal proximal tubular cell injury through the prostaglandin $E_2$ ($PGE_2$) receptor EP4. Methods: Human renal tubular epithelial (HK-2) cells were pretreated with paricalcitol (2 ng/mL) for 1 hour and exposed to LPS ($1{\mu}g/mL$). The effects of paricalcitol pretreatment in relation to an EP4 blockade using AH-23848 or EP4 small interfering RNA (siRNA) were investigated. Results: The expression of cyclooxygenase-2, $PGE_2$, and EP4 were significantly increased in LPS-exposed HK-2 cells treated with paricalcitol compared with cells exposed to LPS only. Paricalcitol prevented cell death induced by LPS exposure, and the cotreatment of AH-23848 or EP4 siRNA offset these cell-protective effects. The phosphorylation and nuclear translocation of p65 nuclear factor-kappaB ($NF-{\kappa}B$) were decreased and the phosphorylation of Akt was increased in LPS-exposed cells with paricalcitol treatment. AH-23848 or EP4 siRNA inhibited the suppressive effects of paricalcitol on p65 $NF-{\kappa}B$ nuclear translocation and the activation of Akt. The production of proinflammatory cytokines and the number of terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling-positive cells were attenuated by paricalcitol in LPS exposed HK-2 cells. The cotreatment with an EP4 antagonist abolished these anti-inflammatory and antiapoptotic effects. Conclusion: EP4 plays a pivotal role in anti-inflammatory and antiapoptotic effects through Akt and $NF-{\kappa}B$ signaling after paricalcitol pretreatment in LPS-induced renal proximal tubule cell injury.

인동덩굴로부터 분리된 Cynaroside이 Doxorubicin으로 유도된 인간 근위세뇨관 HK-2 세포의 괴사에 미치는 저해 효과 (Inhibitory Effect of Cynaroside Isolated from Lonicera japonia Thunb on Doxorubicin-induced Necrosis in Human Renal Proximal Tubular HK-2 Cells)

  • 노종현;정호경;이무진;장지훈;심미옥;정자균;정다은;안병관;조현우
    • 한국약용작물학회지
    • /
    • 제25권5호
    • /
    • pp.322-327
    • /
    • 2017
  • Background: Cynaroside is a flavone, a flavonoid-like compound, known by different names (luteoloside and cinaroside). It is commonly found in Lonicera japonica Thunb., Chrysanthemum moriflium, and Angelica keiskei. The process of cell death has been classified as necrosis and apoptosis. Necrosis refers to unregulated cell death induced by a chemotherapeutic agent. Doxorubicin is an anthracycline anti-cancer drug used to treat acute leukemia, cancer, and lymphoma. However, it induces nephrotoxicity including tubular damage. Therefore, we investigated the protective effect of cynaroside against doxorubicin-induced necrosis in HK-2 cells. Methods and Results: To confirm the beneficial effect of cynaroside on doxorubicin-induced necrosis, HK-2 cells, a human proximal tubule epithelial cell line were treated with $10{\mu}M$ doxorubicin and $80{\mu}M$ cynaroside. Doxorubicin treatment resulted in increased DNA fragmentation, caspase-3 activity and mitochondria hyperactivation during cell necrosis. However, pretreatment with $80{\mu}M$ cynaroside attenuated DNA fragmentation, caspase-3 activity and mitochondria hyperactivation induced by $10{\mu}M$ doxorubicin in HK-2 cells. Conclusions: These results indicated that pretreatment with cynaroside ameliorated doxorubicin-induced necrosis in HK-2 cells. Therefore, cynaroside be used as a therapeutic agent for improving doxorubicin-induced nephrotoxicity. However, further studies are required to evaluated the toxicity of cynaroside treatment in animals and to determine its protective effect against doxorubicin-induced nephrotoxicity in an animal model.