• Title/Summary/Keyword: Prototypical building

Search Result 12, Processing Time 0.021 seconds

A Review on the Definition Methods of Prototypical Office Building for Energy Analysis (에너지해석용 표준 업무용건물의 정의방법에 관한 연구 리뷰)

  • Kim, Hye-Jin;Seo, Dong-Hyun
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.3
    • /
    • pp.103-111
    • /
    • 2018
  • A prototypical building that represents the energy characteristics of buildings can be used as a mean of improving building energy efficiency by supporting policy makers, researchers, architects and engineers. This paper is a fundamental study for the definition of prototypical office building models of Korea. First of all, the term "prototypical buildings" was defined in the context of the representatives of building stock by examining the meanings used from many previous researches. Then, building energy related DB of Korea that is available from public and governmental organization such as MLIT (Ministry of Land, Infrastructure and Transport) and KEEI (Korea Energy Economics Institute) is analyzed in terms of materials for prototypical building definition. Finally, numerous prototypical building studies since 1990's from all of the world were classified with three criteria based on the degrees of the used DB and assumptions in defining prototypical building. The found three criteria are EDPB (Empirical Decision based Prototypical Building), HIPB (Hybrid Information based Prototypical Building) SAPB (Statistical Analysis based Prototypical Building).

A Study on Standard Heating and Cooling Load according to Design Factors using Prototypical Load Model (표준부하모델을 이용한 설계 변수에 따른 표준부하량 분석)

  • Kim, Kwonye;Bae, Sangmu;Nam, Yujin
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.17 no.1
    • /
    • pp.1-13
    • /
    • 2021
  • Before newly-built building and building remodeling, it is important to predict and analyze building energy performance through energy simulation programs. Nevertheless, simulation results widely vary depending on individual user experience and input values. Therefore, this study uses prototypical building model, a versatile tool in building energy modeling, simulation and research for researchers and policy-makers, and ASHRAE standards. Then, it analyzed the changes in design type (roof type, number of floors) for the base case. As the result, it was found that the gap of annual energy demand per between them is maximally 9.1%.

Calibration and Verification of Detailed Prototypical Apartment Building Energy Models for Estimation of Green Remodeling Feasibility (그린리모델링 효과평가를 위한 표준공동주택 정밀에너지해석모델 보정과 검증)

  • Donghyun Seo
    • Land and Housing Review
    • /
    • v.15 no.2
    • /
    • pp.9-17
    • /
    • 2024
  • The prototypical building energy model is very useful in building energy policies, research, and technology development. A prototypical apartment model for detailed energy analysis was proposed by Seo et al. in 2014, but sufficient verification was not possible due to the lack of reliable measurement data in predicting the model's energy consumption. However, verification is now possible thanks to a recent study that analyzed the Household Energy Panel Survey (HEPS) data that is released annually by the Korea Energy Economics Institute (KEEI) and published apartment complex benchmark data. The data was used to calibrate the prototypical apartment energy model located in the central region and constructed between 1990 and 1999. The calibrated model was used to verify the other apartment building groups with respect to region and year of completion. Meteorological data for five representative cities each in the central and southern regions were used for the simulation. A majority of the 18 groups produced results that satisfied the MBE and cv(RMSE) criteria.

Population Allocation at the Building level for Micro-level Urban Simulation: A Case of Jeonju, Korea

  • Kim, Dohyung;Cho, Dongin
    • Asian Journal of Innovation and Policy
    • /
    • v.9 no.2
    • /
    • pp.223-239
    • /
    • 2020
  • It is important for urban planners and policy makers to understand complex, diverse urban demands and social structure, but this is not easy due to lack of data that represents the dynamics of residents at micro-geographical level. This paper explores how to create population data at at a micro-level by allocating population data to building. It attempted to allocate population data stored in a grid layer (100 meters by 100 meters) into a building footprint layer that represents the appearance of physical buildings. For the allocation, this paper describes a systemic approach that classifies grid cells into five prototypical patterns based on the composition of residential building types in a grid cell. This approach enhances allocation accuracy by accommodating heterogeneity of urban space rather than relying on the assumption of uniform spatial homogeneity of populations within an aerial unit. Unlike the methods that disaggregate population data to the parcel, this approach is more applicable to Asian cities where large multifamily residential parcels are common. However, it should be noted that this paper does not demonstrate the validity of the allocated population since there is a lack of the actual data available to be compared with the current estimated population. In the case of water and electricity, the data is already attached to an individual address, and hence, it can be considered to the purpose of the validation for the allocation. By doing so, it will be possible to identify innovative methods that create a population distribution dataset representing the comprehensive and dynamic nature of the population at the micro geographical level.

Performance Analysis of Electricity Demand Forecasting by Detail Level of Building Energy Models Based on the Measured Submetering Electricity Data (서브미터링 전력데이터 기반 건물에너지모델의 입력수준별 전력수요 예측 성능분석)

  • Shin, Sang-Yong;Seo, Dong-Hyun
    • Journal of Korean Institute of Architectural Sustainable Environment and Building Systems
    • /
    • v.12 no.6
    • /
    • pp.627-640
    • /
    • 2018
  • Submetering electricity consumption data enables more detail input of end use components, such as lighting, plug, HVAC, and occupancy in building energy modeling. However, such an modeling efforts and results are rarely tried and published in terms of the estimation accuracy of electricity demand. In this research, actual submetering data obtained from a university building is analyzed and provided for building energy modeling practice. As alternative modeling cases, conventional modeling method (Case-1), using reference schedule per building usage, and main metering data based modeling method (Case-2) are established. Detail efforts are added to derive prototypical schedules from the metered data by introducing variability index. The simulation results revealed that Case-1 showed the largest error as we can expect. And Case-2 showed comparative error relative to Case-3 in terms of total electricity estimation. But Case-2 showed about two times larger error in CV (RMSE) in lighting energy demand due to lack of End Use consumption information.

Effects of ground motion scaling on nonlinear higher mode building response

  • Wood, R.L.;Hutchinson, T.C.
    • Earthquakes and Structures
    • /
    • v.3 no.6
    • /
    • pp.869-887
    • /
    • 2012
  • Ground motion scaling techniques are actively debated in the earthquake engineering community. Considerations such as what amplitude, over what period range and to what target spectrum are amongst the questions of practical importance. In this paper, the effect of various ground motion scaling approaches are explored using three reinforced concrete prototypical building models of 8, 12 and 20 stories designed to respond nonlinearly under a design level earthquake event in the seismically active Southern California region. Twenty-one recorded earthquake motions are selected using a probabilistic seismic hazard analysis and subsequently scaled using four different strategies. These motions are subsequently compared to spectrally compatible motions. The nonlinear response of a planar frameidealized building is evaluated in terms of plasticity distribution, floor level acceleration and uncorrelated acceleration amplification ratio distributions; and interstory drift distributions. The most pronounced response variability observed in association with the scaling method is the extent of higher mode participation in the nonlinear demands.

Analysis of the Thermal Environment and Natural Ventilation for the Energy Performance Evaluation of the Double Skin System during the Summer (이중외피 시스템의 에너지성능평가를 위한 하절기 열환경 및 자연환기 분석)

  • Eom, Jung-Won;Cho, Soo;Huh, Jung-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.4
    • /
    • pp.68-76
    • /
    • 2002
  • This paper discusses thermal and ventilation performance which might be caused by the adoption of one of specific building facade techniques, Double Skin System(DSS). One building with a prototypical DSS was selected and systematically investigated through field monitoring and computer simulation techniques. A network model of ventilation was successfully made using COMIS to evaluate ventilation performance of the system which can hardly be done by field measurements. Various operating conditions of air conditioning on/off and window opening were implemented in this type of building. Through the appropriate operation of the DSS in summer, simulation-based and experimental results implicate that it can lead to cooling energy savings.

BIM Modeling and Architectonic Characteristics of Bended-Joint Components of the Yoon Jeung Residence (윤증고택의 BIM 부재모델링과 꺾음부의 구축적 특성)

  • Park, Soo-Hoon
    • Korean Journal of Computational Design and Engineering
    • /
    • v.18 no.1
    • /
    • pp.10-20
    • /
    • 2013
  • The Yoon Jeung residence is a well-known and prototypical aristocratic house example showing typical and interesting characteristics of the traditional houses in the middle region of Korea. When it comes to understanding the architectonic characteristics of a Korean traditional house, it was not easy to actually capture the compositional and/or constructional knowledge of the building even though it is a wooden building with many wooden members showing their compositional relations. Now with the help of the BIM tool, the Building Information Modeling tool, we could actually be able to compare and analyze each member and their compositional relations. In this paper we examine the unique traditional composition method used in extending the building's structural sections utilizing the bended-joint characteristics of traditional buildings with exemplar case of the Yoon Jeung residence. Thereby we examine those relationships among three major compositional parts namely the plan based spatial compositions, the upper wooden compositions and the roof forms so as to specify the building's typical characteristics with reasonably acceptable causes. The inner and outer block of the residence are handled with their bended-joints with more detailed knowledge of categorization by way of joint relationships among members.

Ventilation Rate Impact on Heating and Cooling Energy Consumption in Residential Buildings : Concentrated on a Detached House in Cold and Hot/Humid Climatic Zones of USA (환기량의 주거건물 냉난방에너지 소비에 대한 영향 : 미국 한랭기후 및 고온다습기후의 단독주택을 중심으로)

  • Moon, Jin-Woo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.11
    • /
    • pp.747-753
    • /
    • 2011
  • The purpose of this study was to quantify the impact of the ventilation rate on heating and cooling energy consumption in a detached house. For it, a series of simulations for the application of the diverse ventilation rate (ACH) were computationally conducted for a prototypical detached residential building in the cold climate (Detroit, Michigan) and hot/humid climate (Miami, Florida) of USA. Analysis revealed that ventilation is a significant heat losing source in the cold climate; thus, the higher ventilation rate significantly increases the heating energy consumption and energy cost in the cold climate; while the impact on energy increase for heating and cooling energy consumption is similar in hot/humid climate with less significancy compared to cold climate. The research outcome of this study could be a fundamental data for determining the optimal ventilation rate in terms of indoor air quality, but also building energy performance well.

Impact of Reinforced Standard for Envelope Insulation on the Regional Heating and Cooling Energy Consumption (강화된 건물 외피 단열기준의 지역별 냉난방에너지 감소 효과)

  • Moon, Jin-Woo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.10
    • /
    • pp.646-655
    • /
    • 2011
  • This study aimed at quantifying the impact of the reinforced standard for envelope insulation on heating and cooling energy consumption in a Korean detached house as well as at identifying the effect of regionally subdivided standards. For them, a series of simulations for application of the reinforced standard on respective walls, roof, floor, windows, and all envelopes were computationally conducted for a prototypical detached residential building. In addition, the subdivided standards were applied to each regions-central and southern regions, and the Jeju island. Analysis revealed that heat transfer through envelopes was the most significant source of building heat gain and loss; the reinforced standard effectively reduced heating energy consumptions, especially in central region; and the subdivided standards did not presented a clear difference in the amount of energy consumption for the southern region and the Jeju island, thus, a further study is required to investigate the necessity of regional subdivisions.