• Title/Summary/Keyword: Protoplasts

Search Result 344, Processing Time 0.024 seconds

The Secondary Effects of Pencycuron on the Formation of Giant Protoplasts and the Lipid Peroxidation of Rhizoctonia solani AG4

  • Kim, Heung-Tae;Isamu Yamaguchi;Cho, Kwang-Yun
    • The Plant Pathology Journal
    • /
    • v.17 no.1
    • /
    • pp.36-39
    • /
    • 2001
  • The secondary effects of pencycuron on cell membrane of Rhizoctonia solani AG4 were investigated by the observation of giant protoplast formation and lipid peroxidation. Compared to protoplasts of R. solani R-C (sensitive strain) and Rh-131 (non-sensitive strain) increased in their size by 2.0-3.5 times 12 h after incubation in potato-dextrose broth containing novozyme (7 mg/$m\ell$) and $\beta$-glucuronidase ($60\mu\textrm{g}/$\textrm{ml}) with 0.6 M mannitol (pH 5.2). The increase of protoplast size in R-C was slightly inhibited from $13.8\textrm{mg}/\textrm{ml}$ without pencycuron to 10.3 ${\mu}{\textrm}{m}$ with 1.0$\mu\textrm{g}$/$m\ell$ of pencycuron. However, the size of giant protoplast of Rh-131 was not affected by the pencycuron treatment. Both strains R-C and Rh-131 did not exhibit the lipid peroxidation 12 h after the application of 1.0 $\mu\textrm{g}$/$m\ell$ pencycuron. The remarkable peroxidation of membrane lipid was observed only in R-C 24 h after pencycuron application, but not in Rh-131. Althought the inhibition of giant protoplast formation and the membrane lipid peroxidation were observed only in the sensitive strain R-C by pencycuron, it is difficult to conclude that these are the primary mechanism of pencycuron. The mild activity of pencycuron on the inhibition of giant protoplast formation and late membrane lipid peroxidation in the fungicide-sensitive strain did not noincid with the dramatic activity of pencycuron in R. solani. Therefore, our results suggest that inhibition of giant protoplast formation and membrane lipid peroxidation is the secondary effect of pencycuron.

  • PDF

Importance of Strain Improvement and Control of Fungal cells Morphology for Enhanced Production of Protein-bound Polysaccharides(β-D-glucan) in Suspended Cultures of Phellinus linteus Mycelia (Phellinus linteus의 균사체 액상배양에서 단백다당체(β-D-glucan)의 생산성 향상을 위한 균주 개량과 배양형태 조절의 중요성)

  • Shin, Woo-Shik;Kwon, Yong Jung;Jeong, Yong-Seob;Chun, Gie-Taek
    • Korean Chemical Engineering Research
    • /
    • v.47 no.2
    • /
    • pp.220-229
    • /
    • 2009
  • Strain improvement and morphology investigation in bioreactor cultures were undertaken in suspended cultures of Phellinus linteus mycelia for mass production of protein-bound polysaccharides(soluble ${\beta}$-D-glucan), a powerful immuno-stimulating agent. Phellineus sp. screened for this research was identified as Phellinus linteues through ITS rDNA sequencing method and blast search, demonstrating 99.7% similarity to other Phellinus linteus strains. Intensive strain improvement program was carried out by obtaining large amounts of protoplasts for the isolation of single cell colonies. Rapid and large screening of high-yielding producers was possible because large numbers of protoplasts ($1{\times}10^5{\sim}10^6\;protoplasts/ml$) formed using the banding filtration method with the cell wall-disrupting enzymes could be regenerated in relatively high regeneration frequency($10^{-2}{\sim}10^{-3}$) in the newly developed regeneration medium. It was demonstrated that the strains showing high performances in the protoplast regeneration and solid growth medium were able to produce 5.8~6.4%(w/w) of ${\beta}$-D-glucan and 13~15 g/L of biomass in stable manners in suspended shake-flask cultures of P. linteus mycelia. In addition, cell mass increase was observed to be the most important in order to enhance ${\beta}$-D-glucan productivity during the course of strain improvement program, since the amount of ${\beta}$-D-glucan extracted from the cell wall of P. linteus mycelia was almost constant on the unit biomass basis. Therefore we fully investigated the fungal cell morphology, generally known as one of the key factors affecting cell growth extent in the bioreactor cultures of mycelial fungal cells. It was found that, in order to obtain as high cell mass as possible in the final production bioreactor cultures, the producing cells should be proliferated in condensed filamentous forms in the growth cultures, and optimum amounts of these filamentous cells should be transferred as active inoculums to the production bioreactor. In this case, ideal morphologies consisting of compacted pellets less than 0.5mm in diameter were successfully induced in the production cultures, resulting in shorter period of lag phase, 1.5 fold higher specific cell growth rate and 3.3 fold increase in the final biomass production as compared to the parallel bioreactor cultures of different morphological forms. It was concluded that not only the high-yielding but also the good morphological characteristics led to the significantly higher biomass production and ${\beta}$-D-glucan productivity in the final production cultures.

Improvement of Carbapenem Antibiotics Productivity in S. cattleya by Transformation (형질전환에 의한 S. cattleya의 카바페넴 항생제 생산성 향상)

  • Park, Ji-Sun;Lee, Kang-Man
    • YAKHAK HOEJI
    • /
    • v.40 no.2
    • /
    • pp.212-217
    • /
    • 1996
  • Streptomyces cattleya is a producer of carbapenem antibiotics, thienamycin and N-acetylthienamycin, which have potent and broad-spectrum antibacterial activities. We stud ied on strain improvement for antibiotic productivity of S. cattleya by transformation technique which employed S.cattleya protoplasts and chromosomal DNAs of glutamic acid producers: Corynebacterium glutamicum and Arthrobacter simplex. 150 Transformant strains were cultured and bioassayed using Bacillus subtilis and Staphylococcus aureus as test organisms. 8.7% of transformants tested showed 1.4~2.6 fold higher productivities than wild type which produced $1.61{\pm}0.67{\mu}g/ml$. The best transformant produced $8.36{\pm}2.84{\mu}g/ml$ carbapenems.

  • PDF

Clinical Study on the Effect of Exterior Vascular Laser Irradiation Therapy by Live Blood Analysis

  • Lee, Eun-Hyoung;Jeong, Jae-Ook;Min, Sung-Soon;Song, Su-Jin;Kim, Won-Ill
    • The Journal of Korean Medicine
    • /
    • v.26 no.4
    • /
    • pp.143-151
    • /
    • 2005
  • Objectives: The purpose of this study was to investigate the effect of exterior vascular laser irradiation therapy by live blood analysis. Methods: We analysed the changing forms of the live blood sample with a microscope before and after exterior vascular laser irradiation therapy of the blood. Results: Rouleau of red cells, erythrocyte aggregation of red cells, thrombocyte aggregation, uric acid crystals, red crystals, and protoplasts in blood were decreased significantly after exterior vascular laser irradiation therapy. Conclusions: This study suggests that exterior vascular laser irradiation will have positive effects in eliminating various effete matters in blood and will have efficacy in the treatment and prevention of cardiovascular system disorders and hyperlipidemia, caused by effete matters, or numbness and arthralgia caused by blood stagnancy and blood circulation disorder.

  • PDF

Light Effects on the Membrane Potential in Oat Cells

  • Kim, Kwan-Bae;Park, Moon-Hwan;Chae, Quae
    • BMB Reports
    • /
    • v.28 no.5
    • /
    • pp.382-386
    • /
    • 1995
  • One of the reaction pathways in light-invoked signal transduction can be initiated through ion fluxes across the plasma membrane in higher plants. We isolated protoplasts from oat coleoptile and examined the effects of light on the membrane potential using a membrane potential-sensitive fluorescent probe (bisoxonol). Both red and far-red light initially induced a hyperpolarization in oat cells. Red light-induced hyperpolarization was effectively dissipated by 100 mM $K^+$, but the hyperpolarization induced by far-red light was not depolarized by any of the cations ($K^+$, $Ca^{2+}$, $Li^+$, $Na^+$) tested. The depolarization induced by red light and $K^+$ was inhibited by 200 mM TEA, which is a $K^+$ channel blocker. These results suggest that $K^+$ influx through the inward $K^+$ channel may be a depolarization path in the phytochrome-mediated signal transduction.

  • PDF

Evaluation of Nutrients for the Protoplast Culture of Genus Nicotiana (담배 야생종의 원형질체 배양에 미치는 무기영양소의 효과)

  • 김대재
    • Journal of Plant Biology
    • /
    • v.31 no.4
    • /
    • pp.309-315
    • /
    • 1988
  • Leaf mesophy11 protoplast cultures from six Nicotiana species, N. debneyi, N. rustica, N. amplexicaulis, N. glauca, N. glutinosa, and N. sylvestris were carried out. When we reduced the NH4NO3 and Fe.EDTA concentration to 1/3(7 mM) and 1/10(10$\mu$M) from the Murashige and Skoog medium respectively, cell division of the protoplasts was efficiently induced in four Nicotiana species, N. debneyi, N. rustica, N. amplexicaulis and N. glauca. However, other two species, N. glutinosa and N. sylvestris were failed in inducing cell division at the same culture condition. The protoclone calluses derived from four Nicotiana species were consequently regenerated on a MS basal medium supplemented with the appropriate auxin and cytokinin.

  • PDF

Biotechnology of Reproductive Processes in Cereals

  • Barnabas, Beata
    • Journal of Plant Biotechnology
    • /
    • v.1 no.1
    • /
    • pp.56-60
    • /
    • 1999
  • Sexual reproduction is an essential process in the propagation of flowering plants. Recent advances in plant cell biology and biotechnology have brought new and powerful methodologies to investigate and manipulate the reproductive processes of angiosperms including agronomically important crop plants. Successful cryopreservation of maize, rye and triticale pollen and young embryos of microspore-and zygote-origine contributes to long term preservation of important plant germ-lines in gene banks. Discovering morphogenetic characteristics of the different developmental pathways taking place in wheat and maize androgenesis in vitro helps to influence the procedure to produce genetically and phenotipically stable homozygous doubled haploid plants for breeding purposes. Detailed ultrastructural and cell-biological studies on the developmental sequences of male and female gametophyte development in wheat, experimental protocols developed to isolate and micromanipulate egg cell protoplasts, make it possible to use plant gametes and the sexual route itself to produce genetically improved organisms. Plant gametes can become useful tools for crop improvement in the near future. Recent achievements by our laboratory in this field are reviewed in the present paper

  • PDF

Genetic Analysis on Bioconversion of Aniline to Acetaminophen in Streptomyces fradiae

  • Jin, Hyung-Jong;Park, Ae-Kyung;Lee, Sang-Sup
    • Archives of Pharmacal Research
    • /
    • v.15 no.1
    • /
    • pp.35-40
    • /
    • 1992
  • S. fradiae showed the highest acetanilide p-hydroxylation activity in the tested strains. And S. fradiae was well characterized genetically, especially with respect to tylosin production. Two mutants, which lost hydroxylation, were isolated in 140 regenerated colonies from protoplasts. In restriction enzyme digesion of total DNAs, isolation of giant linear plasmid DNA and determination of antibiotic resistances to chloramphenicol, tylosin, hygromycin B and mitomycin C, any differences among mutants and a wild type strain were not detected. These facts suggest that lesion on 6, 000 Kb chromosomal DNA was responsible for the lack of p-hydroxylation activity induced by protoplast formation and regeneration.

  • PDF

Isolation, Culture and Electroporation of Rice Protoplasts (벼 원형질체의 분리, 배양 및 Electroporation에 관한 연구)

  • 황성진
    • Journal of Plant Biology
    • /
    • v.34 no.1
    • /
    • pp.19-23
    • /
    • 1991
  • Culture of embryogenic callus and suspension were induced from rice seeds in MS2.5 medium. In hormone free N6 medium, whole plantlets were regenerated from embryogenic callus. We observed cell division and reformation of embryogenic callus on culture of protoplast isolated from embryogenic cell suspensions. In addition, we studied the influencing factors on viability of protoplast treated with electroporation. Viability was decreased according to the increase of voltage and capacitance during electroporation. An optimal level of viability was obtained after treatment with $200-300\;V/1180\;\mu\textrm{F}$ in HEM buffer at $4^{\circ}C$..

  • PDF

Formation, Regeneration, and Fusion of Protoplast of Micromonospora spp. (Micromonospora속 균주들의 protoplast생성, 균사체로의 환원 및 융합에 대한 연구)

  • 김광수;이세영
    • Korean Journal of Microbiology
    • /
    • v.21 no.3
    • /
    • pp.156-162
    • /
    • 1983
  • Conditions for effcient formation and regeneration of protoplasts of Micromonospora rosaria and Micromonospora purpurea were investigated. The state of inoculm, culture stage and growth in a medium containing partially growth-inhibiting concentration of glycing have significant effects on portoplasting. A high frequency of regeneration (up to 30%) was accomplished with a hypertonic regeneration agar medium defined by Okanishi for Strptomyces. Using the optimal conditions for protroplasting and regeneration, protoplast fusion of auxotrophic M.rosaria was carried out. Polyethylene glycol 1,000 was chosen for fusogenic agent. When signgle auxotrophs were used, the recombinant frequency of auxortrophic markers varied from 1.3 to 3.2%. Using two double auxotrophs, the recombinant frequencies of 0.7-4.3% were obtained. Much lower frequencies(three or more orders of magnitude) were observed by the conventional matings.

  • PDF