• 제목/요약/키워드: Proton exchange membrane

검색결과 528건 처리시간 0.023초

Effect of the Molecular Weight of Poly(vinyl alcohol) Blended with Sulfonated Polysulfone Membranes for Fuel Cell Applications

  • Chang, Sung-Hyuk;Chung, Sung-Il;Rhim, Ji-Won
    • Korean Membrane Journal
    • /
    • 제5권1호
    • /
    • pp.18-24
    • /
    • 2003
  • In order to improve the mechanical properties of the sulfonated polysulfone (SPSf) membranes previously synthesized in our laboratory, poly(vinyl alcohol) (PVA) was blended which is well known as the excellent physical and chemical properties. The resulting membranes blended with several molecular weight of PVA varying from 13,000 to 124,000 have been characterized to investigate the effect of PVA molecular weight in terms of ion conductivities, methanol permeabilities, water contents and ion exchange capacities for both heat treated and untreated membranes at 150$^{\circ}C$. The proton conductivity is decreased as the molecular weight of PVA increases. The plain SPSf-6.0 showed the proton conductivity of 0.078 S/cm whereas the blended membrane with M.W. 31,000 PVA indicated 0.04 S/cm. For methanol permeabilities, when PVA is added to SPAf-6.0, methanol crossover is increased because of the gain of the hydrophilicity from 3.4 to 6.5${\times}$10$\^$-6/ $\textrm{cm}^2$/s. For the annealed blended membranes (with M.W. 31,000 PVA), both the methanol corssover and proton conductivity showed very consistent values, about 2.3${\times}$10$\^$-6/ $\textrm{cm}^2$/s and 0.036 S/cm, respectively.

Preparation and Characterization of Nafion Composite Membranes Containing 1-ethyl-3-methylimidazolium Tetracyanoborate

  • Shin, Mun-Sik;Park, Jin-Soo
    • 전기화학회지
    • /
    • 제15권1호
    • /
    • pp.35-40
    • /
    • 2012
  • The composite membranes using Nafion as matrix and 1-ethyl-3-methylimidazolium tetracyanoborate (EMITCB) as ion-conducting medium in replacement of water were prepared and characterized. The amount of EMITCB in Nafion varied from 30 to 50wt%. The composite membranes are characterized by ion conductivity, thermogravitational analyses (TGA) and small-angle X-ray scattering (SAXS). The composite membranes containing EMITCB of 40wt% showed the maximum ionic conductivity which was ~0.0146 S $cm^{-1}$ at 423.15 K. It is inferred that the decrease in ionic conductivity of all the composite membranes might be due to the decomposition of a tetracyanoboric acid formed in the composite membranes. The results of SAXS indicated that the ionic clusters to conduct proton in the composite membranes were successfully formed. In accordance with the results of ionic conductivity as a function of a reciprocal temperature, SAXS showed a proportional decrease in scattering maximum $q_{max}$ as the amount of EMITCB increases in the composite membranes, which results in the increase in ionomer cluster size. The TGA showed no significant decomposition of the ionic liquid as well as the composite membranes in the range of operating temperature ($120-150^{\circ}C$) of high temperature proton exchange membrane fuel cells (HTPEMFC). As a result, EMITCB is able to play an important role in transferring proton in the composite membranes at elevated temperatures with no external humidification for proton exchange membrane fuel cells.

Dynamic Transient Phenomena of a Proton Exchange Membrane Fuel Cell

  • Lee, Ying;Choi, Yong-Sung;Zhang, You-Sai;Lee, Kyung-Sup
    • 한국전기전자재료학회논문지
    • /
    • 제23권7호
    • /
    • pp.530-533
    • /
    • 2010
  • The proton exchange membrane fuel cell (PEMFC) holds great promise of clean power. However, in practical applications which use the PEMFC as the power source, the output voltage from the fuel cell undergoes a transient response especially during acceleration and deceleration. This paper presents the relationships between the charge curves of the internal voltage rise, discharge curves of the internal voltage drop, the voltage with a time constant $V_{\tau}$ and finally, the load and time constant $\tau$ of $FC_1$ and $FC_2$, connected both in series and in parallel.

연료전지용 MXenes의 등장 (Emergence of MXenes for Fuel Cell)

  • 마노즈 카라코티;남상용
    • 공업화학
    • /
    • 제34권2호
    • /
    • pp.99-105
    • /
    • 2023
  • Recently, 2D materials greatly impact in the various applications especially in the energy conversion and storage devices. Among the 2D materials, nowadays researchers are showing their propensity towards the MXenes due to their potential structural and physical properties as well as their use in various applications. Recently, MXenes have been used as filler in polymer electrolytes membranes and as catalytic support to increase the performance of fuel cells (FCs). But this review covers only recent progress and application of MXenes in proton and anion exchange membranes for FCs. Also, this review will provide a significant guidance and broad overview for future research in MXenes based polymer electrolyte membrane for FCs.

고분자 전해질 연료전지에서 $TiO_2$-Nafion 혼합막에 관한 연구 (A Study on $TiO_2$/Nafion composite membrane in PEMFC)

  • 김미림;김태영;김성수;민병준;조성용
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.88.2-88.2
    • /
    • 2011
  • Proton exchange memb rane fuel cell has been considered one of the next generation power source for electric vehicles due to high power density and low emissions. $TiO_2$/Nafion composite was prepared by the in-situ sol-gel method. The electrochemical characteristics of the $TiO_2$-Nafion composite membrane were evaluated by current-voltage and impedance of the membrane eletrode assembly in a single Proton exchange membrane fuel cell (PEMFC).

  • PDF

고분자전해질 연료전지용 Poly(arylene ether sulfone) 막의 특성 (Characteristics of Poly(arylene ether sulfone) Membrane for Proton Exchange Membrane Fuel Cells)

  • 정재진;신용철;이무석;이동훈;나일채;이호;박권필
    • Korean Chemical Engineering Research
    • /
    • 제51권5호
    • /
    • pp.556-560
    • /
    • 2013
  • 최근에 저가의 고분자전해질 연료전지(Proton Exchange Membrane Fuel Cells, PEMFC)용 비불소계 전해질 막 연구개발이 활발히 진행되고 있다. 본 연구에서는 PEMFC 운전 조건에서 Poly(arylene ether sulfone)(PAES) 막과 불소계막의 특성을 비교하였다. I-V 분극곡선, 수소투과도, 전기화학적 표면적, 막저항 및 부하 전달 저항 등을 측정 분석했다. PAES 막은 상대습도 100%에서는 불소계 막과 비슷한 성능을 보였으나 낮은 상대습도에서 이온전도도가 낮아 성능감소가 컸다.

술폰화 폴리이미드 막의 수소이온 전도도에 대한 소수성 영역의 효과 (Effect of hydrophobic domain on proton conductivity of sulfonated polyimide membranes)

  • Lee, Chang-Hyun;Sohn, Joon-Yong;Park, Ho-Bum;Lee, Young-Moo
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 2004년도 춘계 총회 및 학술발표회
    • /
    • pp.61-64
    • /
    • 2004
  • The proton transport through proton exchange membranes is controlled by the distribution of hydrated structure connected with negative-charged fixed ions such as phosphonic acid, carboxylic acid and sulfonic acid, or water molecules within the membrane.(omitted)

  • PDF

미생물 연료 전지 적용을 위한 양성자 교환막에 대한 검토 (Review on Proton Exchange Membranes for Microbial Fuel Cell Application)

  • 김지민;라즈쿠마 파텔
    • 멤브레인
    • /
    • 제30권4호
    • /
    • pp.213-227
    • /
    • 2020
  • 재생 불가능한 에너지 자원이 수년에 걸쳐 고갈됨에 따라, 재생 에너지 생산을 위한 보다 효과적인 방법에 대한 연구가 증가되었다. 연로전지 개발의 한 분야인 미생물 연료전지(MFC)는 이중 성능의 잠재력 덕분에 발전하였다. MFC는 박테리아와 같은 전극 감소 생물에서 전력을 모아서 전기 에너지를 생산한다. MFC는 폐수를 연료로 사용하여 에너지를 생산하고 폐수를 정화한다. 양성자 교환막(PEM)은 양극과 음극 챔버의 분리막으로, 양성자만 효과적으로 통과할 수 있게 하는 중요한 역할을 한다. Nafion은 MFC에 상업적으로 사용되는 PEM이지만 비용, 생산 시간, 양성자 전도성 차원에서 보완할 점들이 많다. 본 리뷰 논문에는 Nafion을 대체할 수 있는 새로 개발된 PEM 몇 가지를 논의하였다. 또한, PEM, 혼합 PEM 및 복합 PEM에 기반한 MFC를 요약하고자 한다.

내구성능저하된 기체확산층이 고분자전해질 연료전지의 과도응답성능에 미치는 영향 연구 (Study on Transient Response of a Unit Proton Exchange Membrane Fuel Cell with an Aged Gas Diffusion Layer)

  • 조준현;하태훈;박재만;오환영;민경덕;정지영;이은숙
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.76.2-76.2
    • /
    • 2010
  • The gas diffusion layer is the key component of the proton exchange membrane fuel cell because it directly affect to the mass transport mechanism and dynamic behavior of the cell. In this study, the effects of GDL aging on the transient response of the PEM fuel cell is systematically investigated using current step transient response analysis under different stoichiometric ratios and humidity conditions. With GDLs aged by the accelerated stress test, the effects of hydrophobicity and structural changes due to carbon loss in the GDL on the transient response of PEM fuel cells are determined. The degraded GDLs that had uneven hydrophobicity distributions cause local water flooding inside the GDL and induce lower and unstable voltage responses after load changes.

  • PDF

연료전지 분리판의 형상설계를 위한 유동해석 (Flow-Field Analysis for Designing Bipolar Plate Patterns in a Proton Exchange Membrane Fuel Cell)

  • 박정선;정혜미
    • 대한기계학회논문집B
    • /
    • 제26권9호
    • /
    • pp.1201-1208
    • /
    • 2002
  • A numerical flow-field analysis is performed to investigate flow configurations in the anode, cathode and cooling channels on the bipolar plates of a proton exchange membrane fuel cell (PEMFC). Continuous open-faced flow channels are formed on the bipolar plate surface to supply hydrogen, air and water. In this analysis, two types of channel pattern are considered: serpentine and spiral. The averaged pressure distribution and velocity profiles of the hydrogen, air and water channels are calculated by two-dimensional flow-field analysis. The equations for the conservation of mass and momentum in the two-dimensional fluid flow analysis are slightly modified to include the characteristics of the PEMFC. The analysis results indicate that the serpentine flow-fields are locally unstable (because two channels are cross at right angles). The spiral flow-fields has more stable than the serpentine, due to rotational fluid-flow inertia forces. From this study, the spiral channel pattern is suggested for a channel pattern of the bipolar plate of the PEMFC to obtain better performance.