• Title/Summary/Keyword: Proton exchange

Search Result 620, Processing Time 0.052 seconds

Preparation and Characterization of Proton Conducting Crosslinked Membranes Using Polymer Blends (폴리머 블렌딩을 이용한 수소 전도성 가교형 막의 제조와 그 특성)

  • Kim, Jong-Hak;Lee, Do-Kyoung;Choi, Jin-Kyu;Seo, Jin-Ah;Roh, Dong-Kyu
    • Membrane Journal
    • /
    • v.17 no.4
    • /
    • pp.311-317
    • /
    • 2007
  • Proton conducting crosslinked membranes have been prepared by polymer blending, which consist of poly(vinyl alcohol-co-ethylene) (PVA-co-PE) and poly(styrene sulfonic acid-co-maleic acid) (PSSA-co-PMA) at 50 : 50 wt ratio. Two kinds of PSSA-co-PMA copolymer with 3 : 1 and 1 : 1 the molar ratio of PSSA to PMA wereused as a proton conducting source. The ethylene content of PVA-co-PE was also changed as 0, 27 and 44 mol%. The membranes were thermally crosslinked via the esterification reaction between -OH of PVA and -COOH of PMA, as demonstrated by FT-IR spectroscopy (PVA-co-PE)/(PSSA-co-PMA) membranes with 3 : 1 the molar ratio of PSSA to PMA showed higher ion exchange capacity (IEC), lower water uptake and higher proton conductivity than those with 1 : 1 molar ratio. As the PE concentration increased, the IEC values, water uptake and proton conductivities decreased continuously. These properties were elucidated in terms of competitive effect between the concentration of sulfonic acid, hydrophilicity and the crosslinked structure of membranes.

Preparation of Polyether ether ketone[PEEK]/Heteropolyacid [HPA] Blends Membrane for Hydrogen production via Electrodialysis (PEEK/HPA를 이용한 수전해용 저온형 고체고분자 전해질막의 제조)

  • Lee, Hyuck-Jae;Jung, Yun-Kyo;Jang, In-Young;Hwang, Gab-Jin;Bae, Ki-Kwang;Sim, Kyu-Sung;Kang, An-Soo
    • Journal of Hydrogen and New Energy
    • /
    • v.16 no.1
    • /
    • pp.40-48
    • /
    • 2005
  • Until recently, only perfluorinated ionomer membrane such as Nation and Aciflex practically could be successfully used in water splitting. However, these membrane are limited by high cost and loss of membrane performance such as proton conductivity at elevated temperature above 80$^{\circ}C$. The sulfonated aromatic polymers such as PEEK and PSf, polyimides, and polybenzimidazoles are expected to have lower production cost as well as satisfactory chemical and electrochemical properties. HPAs and sulfonated polymers could have a significant influence on water electrolysis performance at elevated temperatures above 80$^{\circ}C$, but these phenomena have received relatively little attention until now. Therefore, it would be desirable to investigate the interrelation between the HPA and sulfonated polymer, such as SPEEK. The SPEEK membrane were prepared by the sulfonation of PEEK, and HPA was blended with SPEEK to increase the mechanical strength and electrochemical characteristics. As a results, electrochemical characteristics such as proton conductivity and ion exchange capacity were improved with the addion of 0.5 g HPA. And the properties of polymer electrolyte, SPEEK/HPA were better than Nation membrane at elevated temperature above 80$^{\circ}C$.

Water Repellency on a Nanostructured Superhydrophobic Carbon Fibers Network

  • Ko, Tae-Jun;Her, Eun-Kyu;Shin, Bong-Su;Kim, Ho-Young;Lee, Kwang-Ryeol;Hong, Bo-Ki;Kim, Sae-Hoon;Oh, Kyu-Hwan;Moon, Myoung-Woon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.224-224
    • /
    • 2012
  • For decades, carbon fiber has expanded their application fields from reinforced composites to energy storage and transfer technologies such as electrodes for super-capacitors and lithium ion batteries and gas diffusion layers for proton exchange membrane fuel cell. Especially in fuel cell, water repellency of gas diffusion layer has become very important property for preventing flooding which is induced by condensed water could damage the fuel cell performance. In this work, we fabricated superhydrophobic network of carbon fiber with high aspect ratio hair-like nanostructure by preferential oxygen plasma etching. Superhydrophobic carbon fiber surfaces were achieved by hydrophobic material coating with a siloxane-based hydrocarbon film, which increased the water contact angle from $147^{\circ}$ to $163^{\circ}$ and decreased the contact angle hysteresis from $71^{\circ}$ to below $5^{\circ}$, sufficient to cause droplet roll-off from the surface in millimeter scale water droplet deposition test. Also, we have explored that the condensation behavior (nucleation and growth) of water droplet on the superhydrophobic carbon fiber were significantly retarded due to the high-aspect-ratio nanostructures under super-saturated vapor conditions. It is implied that superhydrophobic carbon fiber can provide a passage for vapor or gas flow in wet environments such as a gas diffusion layer requiring the effective water removal in the operation of proton exchange membrane fuel cell. Moreover, such nanostructuring of carbon-based materials can be extended to carbon fiber, carbon black or carbon films for applications as a cathode in lithium batteries or carbon fiber composites.

  • PDF

Sulfenic Acid Derived from 1,3-Oxathiolane-3-oxide (1,3-Oxathiolane-3-oxide로 부터 유도되는 술펜산)

  • Wha Suk Lee;Oee Sook Park
    • Journal of the Korean Chemical Society
    • /
    • v.31 no.2
    • /
    • pp.197-202
    • /
    • 1987
  • Sigmatropic rearrangement of cis and trans-2-methyl-N-phenyl-1,3-oxathiolane-2-acetamide (b) and (c) gave unisolable sulfenic acids (d) and (f), respectively. These sulfenic acids were confirmed by deuterium exchange reactions involving 2-methylene and 2-methyl groups. The reactions also showed that no isomerization between the cis and trans sulfoxides (b) and (c) occurred under neutral conditions. However, the isomerization took place in the presence of acid catalyst. Stereospecific recyclization of sulfenic acids to the sulfoxides is attributable to possible hydrogen bonding between sulfenyl oxygen and NH proton or it arises from the geometrical requirements of the reacting bond and atoms in the reverse sigmatropic rearrangement. In the oxidation of 1, 3-oxathiolane, cis sulfoxide (b) could be obtained selectively in high yield by using $H_2O_2$-benzene seleninic acid.

  • PDF

A study on the lattice defects in $LiNbO_3$ single crystal by crystal by $OH^-$ absorption band ($OH^-$ 흡수밴드에 의한 $LiNbO_3$ 단결정의 격자결함에 관한 연구)

  • 조용석;강길영;윤종규
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.3
    • /
    • pp.401-406
    • /
    • 1998
  • For the applications in optical waveguides and devices, LiNbO_3$ single crystals need to overcome the weakness of optical damage due to the inhomogeneities of laser-induced refractive index. This problem can be solved by doping of Mg in LiNbO_3$ and proton exchange of LiNbO_3$. In this study, to understand the mechanism of optical damage resistance in LiNbO_3$, the changes of lattice defects in LiNbO_3$ caused by MgO doping and acid treatment were observed indirectly by $OH^-$ absorption bands using a FT-IR spectrophotometer. The effect of lattice defects on temperature, heat-treatment and polishing were also investigated. It is shown that MgO doping increases optical damage resistance by generating the defects of $Mg_{Nb}^{2+}$ in the lattice of LiNbO_3$, and that proton exchange by implantation of $H^+$ ion in the hexagonally closest packed oxygen layers on the surface of LiNbO_3$, makes lattice defects, which diffuse into the crystal after heat-treatment above $400^{\circ}C$.

  • PDF

Ion Conductivity of Membrane in Proton Exchange Membrane Fuel Cell (고분자전해질 연료전지에서 고분자 막의 이온 전도도)

  • Hwang, Byungchan;Chung, Hoi-Bum;Lee, Moo-Seok;Lee, Dong-Hoon;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.54 no.5
    • /
    • pp.593-597
    • /
    • 2016
  • The effects of relative humidity, current density and temperature on the ionic conductivity were studied in PEMFC (Proton Exchange Membrane Fuel Cell). Water contents and water flux in the electrolyte membrane largely affected ion conductivity. The water flux was modelled and simulated by only electro-osmotic drag and back-diffusion of water. Ion conductivities were measured at membrane state out of cell and measured at MEA (Membrane and Electrode Assembly) state in condition of operation. The water contents in membrane increase as relative humidity increased in PEMFC, as a results of which ion conductivity increased. Current enhanced electro-osmotic drag and back diffusion and then water contents linearly increased. Enhancement of current density results in ion conductivity. Ion conductivity of about 40% increased as the temperature increased from $50^{\circ}C$ to $80^{\circ}C$.

Characteristics of Hydrolysis Reaction Using Unsupported Catalyst at High Concentration of NaBH4 Solutions (고농도 NaBH4 수용액에서 비담지 촉매의 가수분해 반응 특성)

  • Lee, Hye-Ri;Na, Il-Chai;Park, Kwon-Pil
    • Korean Chemical Engineering Research
    • /
    • v.54 no.5
    • /
    • pp.587-592
    • /
    • 2016
  • Sodium borohydride, $NaBH_4$, shows a number of advantages as hydrogen source for portable proton exchange membrane fuel cells (PEMFCs). Properties of $NaBH_4$ hydrolysis reaction using unsupported Co-P-B Co-B, catalyst at high concentration $NaBH_4$ solution were studied. In order to enhance the hydrogen generation yield at high concentration of $NaBH_4$, the effect of catalyst type, $NaBH_4$ concentration and recovery of condensing water on the hydrogen yield were measured. The yield of hydrogen evolution increased as the boron ratio increased in preparation process of Co-P-B catalyst. The hydrogen yield decreased as the concentration increased from 20 wt% to 25 wt% in $NaBH_4$ solution during hydrolysis reaction using 1:5 Co-P-B catalyst. Maximum hydrogen yield of 96.4% obtained by recovery of condensing water and thinning of catalyst pack thickness in reactor using Co-P-B with Co-B catalyst and 25 wt% $NaBH_4$ solution.

Degradation of Electrode and Membrane in Proton Exchange Membrane Fuel Cell After Water Electrolysis (수전해 반응에 의한 고분자전해질 연료전지 전극과 막의 열화)

  • Jeong, Jae-Hyeun;Shin, Eun-Kyung;Jeong, Jae-Jin;Na, Il-Chai;Chu, Cheun-Ho;Park, Kwon-Pil
    • Korean Chemical Engineering Research
    • /
    • v.52 no.6
    • /
    • pp.695-700
    • /
    • 2014
  • Proton Exchange Membrane Fuel Cells (PEMFC) can generate hydrogen and oxygen from water by electrolysis. But the electrode and polymer electrolyte membrane degrade rapidly during PEM water electrolysis because of high operation voltage over 1.7V. In order to reduce the rate of anode electrode degradation, unsupported $IrO_2$ catalyst was used generally. In this study, Pt/C catalyst for PEMFC was used as a water electrolysis catalyst, and then the degradation of catalyst and membrane were analysed. After water electrolysis reaction in the voltage range from 1.8V to 2.0V, I-V curves, impedance spectra, cyclic voltammograms and linear sweep voltammetry (LSV) were measured at PEMFC operation condition. The degradation rate of electrode and membrane increased as the voltage of water electrolysis increased. The hydrogen yield was 88 % during water electrolysis for 1 min at 2.0V, the performance at 0.6V decreased to 49% due to degradation of membrane and electrode assembly.

Multi-layered Coating Deposited on PEMFC (Proton Exchange Membrane Fuel Cell) Bipolar Plates (고분자전해질 연료전지용 바이폴라 플레이트의 다층 코팅의 증착)

  • Yun, Young-Hoon;Chung, Hoon-Taek;Cha, In-Su;Choi, Jeong-Sik;Kim, Dong-Mook;Jung, Jin-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.8
    • /
    • pp.472-476
    • /
    • 2008
  • The surface region of commercial stainless steel 304 and 316 plates has been modified through deposition of the multi-layered coatings composed of titanium film ($0.1{\mu}m$) and gold film ($1-2{\mu}m$) by an electron beam evaporation method. XRD patterns of the stainless steel plates deposited with conductive metal films showed the peaks of the external gold film and the stainless steel substrate. Surface microstructural morphologies of the stainless steel bipolar plates modified with multi-layered coatings were observed by AFM and FE-SEM images. The stainless steel plates modified with $0.1{\mu}m$ titanium film and $1{\mu}m$ gold film showed microstructure of grains of under 100 nm diameter. The external surface of the stainless steel plates deposited with $0.1{\mu}m$ titanium film and $2{\mu}m$ gold film represented somewhat grain growth of Au grains in FE-SEM image. The electrical resistance and water contact angle of the stainless steel bipolar plates modified with multi-layered coatings were examined with the thickness of the gold film.

Efficiency Improvement Research in Proton Exchange Membrane Fuel Cell (고분자전해질형 연료전지의 효율향상에 대한 연구)

  • Jang, Haer-Yong;Kim, Jun-Bom
    • Journal of the Korean Electrochemical Society
    • /
    • v.8 no.4
    • /
    • pp.149-154
    • /
    • 2005
  • Fuel cell performance evaluation logic was developed using G-language (LabVIEW) to measure performance stability. Degree of stability and reliability of performance data were improved with averaged value and standard deviation method. Water injection system was introduced and the performance using this method was comparable to that of conventional humidification method. Water injection system has advantage of lowering operation energy consumption, reducing the number of parts needed in humidification, therefore increasing efficiency of fuel cell system. Fuel cell performance was decreased in case of low temperature operation such as sub freezing condition. Air purge method was tested to reduce the water content in cell fixture before sub freezing condition. The performance degradation due to low temperature operation was minimized by air purge method in medium size cell fixture ($25cm^2$) case.