• Title/Summary/Keyword: Proton Technology

Search Result 566, Processing Time 0.026 seconds

Concerted Asynchronous Proton Transfer in H-Bonding Relay Model: An Implication of Green Fluorescent Protein

  • Kang, Baotao;Karthikeyan, S.;Jang, Du-Jeon;Kim, Heeyoung;Lee, Jin Yong
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.7
    • /
    • pp.1961-1966
    • /
    • 2013
  • Theoretical investigations have been performed for the ground state ($S_0$) and the first excited state ($S_1$) of the hydrogen bonded green fluorescent protein (GFP) model. The potential energy surface (PESs) of $S_0$ was obtained by B3LYP method and that of $S_1$ was obtained by CIS method. Based on the relative stabilities of species and the energy barriers for the proton transfer, it was found that proton transfer could take place both under the ground state and the first excited state. As determined by the proton motions along the reaction coordinate, both the ground state proton transfer (GSPT) and the excited state proton transfer (ESPT) are considered as a concerted and asynchronous process.

Effect of high-energy neutron source on predicting the proton beam current in the ADS design

  • Zheng, Youqi;Li, Xunzhao;Wu, Hongchun
    • Nuclear Engineering and Technology
    • /
    • v.49 no.8
    • /
    • pp.1600-1609
    • /
    • 2017
  • The accelerator-driven subcritical system (ADS) is driven by a neutron source from spallation reactions introduced by the injected proton beam. Part of the neutron source has energy as high as a few hundred MeV to a few GeV. The effects of high-energy source neutrons ($E_n$ > 20 MeV) are usually approximated by energy cut-off treatment in practical core calculations, which can overestimate the predicted proton beam current in the ADS design. This article intends to quantize this effect and propose a way to solve this problem. To evaluate the effects of high-energy neutrons in the subcritical core, two models are established aiming to cover the features of current experimental facilities and industrial-scale ADS in the future. The results show that high-energy neutrons with $E_n$ > 20 MeV are of small fraction (2.6%) in the neutron source, but their contribution to the source efficiency is about 23% for the large scale ADS. Based on this, a neutron source efficiency correction factor is proposed. Tests show that the new correction method works well in the ADS calculation. This method can effectively improve the accuracy of the prediction of the proton beam current.

Strain Improvement Based on Ion Beam-Induced Mutagenesis (이온빔을 이용한 미생물의 균주 개량)

  • Jeong, Hae-Young;Kim, Kye-Ryung
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.3
    • /
    • pp.235-243
    • /
    • 2010
  • For decades, traditional mutation breeding technologies using spontaneous mutation, chemicals, or conventional radiation sources have contributed greatly to the improvement of crops and microorganisms of agricultural and industrial importance. However, new mutagens that can generate more diverse mutation spectra with minimal damage to the original organism are always in need. In this regard, ion beam irradiation, including proton-, helium-, and heavier-charged particle irradiation, is considered to be superior to traditional radiation mutagenesis. In particular, it has been suggested that ion beams predominantly produce strand breaks that often lead to mutations, which is not a situation frequently observed in mutagenesis induced by gamma-ray exposure. In this review, we briefly describe the general principles and history of particle accelerators, and then introduce their successful application in ion beam technology for the improvement of crops and microbes. In particular, a 100-MeV proton beam accelerator currently under construction by the Proton Engineering Frontier Project (PEFP) is discussed. The PEFP accelerator will hopefully prompt the utilization of ion beam technology for strain improvement, as well as for use in nuclear physics, medical science, biology, space technology, radiation technology and basic sciences.

Effects of Proton Irradiation on the Microstructure and Surface Oxidation Characteristics of Type 316 Stainless Steel (양성자 조사가 316 스테인리스강의 미세조직과 표면산화 특성에 미치는 영향)

  • Lim, Yun-Soo;Kim, Dong-Jin;Hwang, Seong Sik;Choi, Min Jae;Cho, Sung Whan
    • Corrosion Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.158-168
    • /
    • 2021
  • Austenitic 316 stainless steel was irradiated with protons accelerated by an energy of 2 MeV at 360 ℃, the various defects induced by this proton irradiation were characterized with microscopic equipment. In our observations irradiation defects such as dislocations and micro-voids were clearly revealed. The typical irradiation defects observed differed according to depth, indicating the evolution of irradiation defects follows the characteristics of radiation damage profiles that depend on depth. Surface oxidation tests were conducted under the simulated primary water conditions of a pressurized water reactor (PWR) to understand the role irradiation defects play in surface oxidation behavior and also to investigate the resultant irradiation assisted stress corrosion cracking (IASCC) susceptibility that occurs after exposure to PWR primary water. We found that Cr and Fe became depleted while Ni was enriched at the grain boundary beneath the surface oxidation layer both in the non-irradiated and proton-irradiated specimens. However, the degree of Cr/Fe depletion and Ni enrichment was much higher in the proton-irradiated sample than in the non-irradiated one owing to radiation-induced segregation and the irradiation defects. The microstructural and microchemical changes induced by proton irradiation all appear to significantly increase the susceptibility of austenitic 316 stainless steel to IASCC.

Performance prediction of gamma electron vertex imaging (GEVI) system for interfractional range shift detection in spot scanning proton therapy

  • Kim, Sung Hun;Jeong, Jong Hwi;Ku, Youngmo;Jung, Jaerin;Kim, Chan Hyeong
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2213-2220
    • /
    • 2022
  • The maximum dose delivery at the end of the beam range provides the main advantage of using proton therapy. The range of the proton beam, however, is subject to uncertainties, which limit the clinical benefits of proton therapy and, therefore, accurate in vivo verification of the beam range is desirable. For the beam range verification in spot scanning proton therapy, a prompt gamma detection system, called as gamma electron vertex imaging (GEVI) system, is under development and, in the present study, the performance of the GEVI system in spot scanning proton therapy was predicted with Geant4 Monte Carlo simulations in terms of shift detection sensitivity, accuracy and precision. The simulation results indicated that the GEVI system can detect the interfractional range shifts down to 1 mm shift for the cases considered in the present study. The results also showed that both the evaluated accuracy and precision were less than 1-2 mm, except for the scenarios where we consider all spots in the energy layer for a local shifting. It was very encouraging results that the accuracy and precision satisfied the smallest distal safety margin of the investigated beam energy (i.e., 4.88 mm for 134.9 MeV).

Comparison of Beam Transfer Methods between Tomo Therapy and Proton Therapy for Prostate Cancer Radiation Therapy (전립선암 방사선 치료 시 토모치료와 양성자치료 빔 전달방식 비교)

  • Park, Jung Min;Ko, Eun Seo;Lee, Jin Hee;Kim, Jin Won;Yang, Jin Ho;Kwon, Kyung Tae
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.31 no.2
    • /
    • pp.75-81
    • /
    • 2019
  • Purpose: Tomo therapy and Proton therapy treatment plans for the treatment of prostate cancer patients were established, and the characteristics of dose distribution according to beam delivery method using Tomo therapy IMRT method and Proton therapy PBS method to compare and analyze the treatment effect were sought. Materials and Methods: Tomo IMRT treatment plan and Proton PBS treatment plan were established using the Hi.art planning station 5.1.1.6 of Tomo therapy and Eclipse 13.7 of VARIAN for three prostate cancer patients who were treated with radiotherapy only for radical purposes without surgery. For the evaluation of two treatment plans, the average dose (Dmean) and maximum dose (Dmax) of PGTV were calculated from dose volume histogram (DVH) to confirm the coverage and calculate CI and HI. In OAR evaluation, the dose received from the rectal volume 25% and the dose received from the bladder were evaluated to compare the normal long-term protection effect. Results: The mean maximum doses of the three patients were 71.4Gy, 75.3Gy and the mean doses were 70.4Gy and 72.8Gy in the DVH of the Tomo IMRT and Proton PBS. The CI was 1.16 and 1.31, and the HI was 0.04 and 0.12 respectively, and the Tomo IMRT was superior to the Proton PBS in dose suitability. Conclusion: The mean dose of PGTV in prostate cancer patients was 3.4% higher in Proton PBS than in Tomo IMRT. This is because the Dose suitability of Tomo IMRT was better, but it is considered to be a small difference to be seen as a significant result. However, the results of the two methods were 51.2% in D 25% and 55.7% less in the average dose of bladder, which could reduce the side effects of patients in proton PBS.

Transfer of Oxygen Vacancy and Proton in Y-doped BaZrO3 (Y-doped BaZrO3에서의 산소 공공과 프로톤의 이동)

  • Kim, Dae-Hee;Jeong, Yong-Chan;Park, Jong-Sung;Kim, Byung-Kook;Kim, Yeong-Cheol
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.6
    • /
    • pp.695-699
    • /
    • 2009
  • We studied the transfer of oxygen vacancy and proton in Y-doped BaZr$O_3$ (BYZ) using density functional theory (DFT). An oxygen vacancy was generated in the $2{\times}2{\times}2$ BYZ superstructure by replacing two Zr atoms with two Y atoms to satisfy the charge neutrality condition. The O vacancy transfer between the first and second nearest O atom sites from a Y atom showed the lowest activation energy barrier of 0.42 eV, compared to the other transfers between first and first, and second and second in the superstructure. Two protons were inserted in the structure by adding a proton and hydroxyl that were supplied by the dissociation of a water molecule. The two protons bonded to the first and second nearest O atoms were energetically the most favorable. The activation energy barrier for a proton transfer in the structure was 0.51 eV, when either proton transferred to its neighbor O atom. This value was well matched with the experimentally determined one.

Integrated Thermochemical Approach to Collision-Induced Dissociation Process of Peptides

  • Shin, Seung Koo;Yoon, Hye-Joo
    • Mass Spectrometry Letters
    • /
    • v.12 no.4
    • /
    • pp.131-136
    • /
    • 2021
  • Collision-induced dissociation of peptides involves a series of proton-transfer reactions in the activated peptide. To describe the kinetics of energy-variable dissociation, we considered the heat capacity of the peptide and the Marcus-theory-type proton-transfer rate. The peptide ion was activated to the high internal energy states by collision with a target gas in the collision cell. The mobile proton in the activated peptide then migrated from the most stable site to the amide oxygen and subsequently to the amide nitrogen (N-protonated) of the peptide bond to be broken. The N-protonated intermediate proceeded to the product-like complex that dissociated to products. Previous studies have suggested that the proton-transfer equilibria in the activated peptide affect the dissociation kinetics. To take the extent of collisional activation into account, we assumed a soft-sphere collision model, where the relative collision energy was fully available to the internal excitation of a collision complex. In addition, we employed a Marcus-theory-type rate equation to account for the proton-transfer equilibria. Herein, we present results from the integrated thermochemical approach using a tryptic peptide of ubiquitin.

Ultrafast Excited State Intramolecular Proton Transfer Dynamics of 1-Hydroxyanthraquinone in Solution

  • Ryu, Jaehyun;Kim, Hyun Woo;Kim, Myung Soo;Joo, Taiha
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.465-469
    • /
    • 2013
  • Proton transfer reaction is one of the most fundamental processes in chemistry and life science. Excited state intramolecular proton transfer (ESIPT) has been studied as a model system of the proton transfer, since it can be conveniently initiated by light. We report ESIPT reaction dynamic of 1-hydroxy-anthraquione (1-HAQ) in solution by highly time-resolved fluorescence. ESIPT time of 1-HAQ is determined to be $45{\pm}10$ fs directly from decay of the reactant fluorescence and rise of the product fluorescence. High time resolution allows observation of the coherent vibrational wave packet motion in the excited state of the reaction product tautomer. The coherently excited vibrational mode involves large displacement of the atoms, which shortens the distance between the proton donor and the acceptor. With the theoretical analysis, we propose that the ESIPT of 1-HAQ proceeds barrierlessly with assistance of the skeletal vibration, which in turn becomes excited coherently by the ESIPT reaction.

Development of High-Efficient Small Euel Cells : I. Synthesis of Organic-Inorganic Nanocomposite Electrolyte Membranes (고효율 소형 연료전지의 개발 : I.유기-무기 나노복합 전해질막의 합성)

  • Park, Yong-Il;Moon, Joo-Ho;Kim, Hye-Kyung;Kim, Suk-Hwam
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.1
    • /
    • pp.50-55
    • /
    • 2005
  • New fast proton-conducting organic-inorganic nanocomposite membranes were successfully fabricated using polymer matrix obtained through proper oxidation of thiol ligands in (3-Mercaptopropyl) trimethoxysilane (MPTS) and hydrolysis/condensation reaction of (3-glycidoxypropyl) trimethoxysilane (GPTS). The obtained nanocomposite membranes showed relatively hirh proton-conductivity over $10^{-2}S/cm$ at $ 25^{circ}C$. The proton conductivities of the fabricated composite membranes increased up to $3.6{\times}10^{-1}$ S/cm cm by increasing temperature and relative humidity to $70^{circ}C$ and 100 $100RH\%$. The high proton conductivity of the composites Is due to the proton conducting path through the GPTS-derived 'pseudo-polyethylene oxide 'network in which sulfonic acid ligands work as a proton donor.