• Title/Summary/Keyword: Protocol optimization

Search Result 275, Processing Time 0.02 seconds

A Priority Based Multipath Routing Mechanism in the Tactical Backbone Network (전술 백본망에서 우선순위를 고려한 다중 경로 라우팅 방안)

  • Kim, Yongsin;Shin, Sang-heon;Kim, Younghan
    • Journal of KIISE
    • /
    • v.42 no.8
    • /
    • pp.1057-1064
    • /
    • 2015
  • The tactical network is system based on wireless networking technologies that ties together surveillance reconnaissance systems, precision strike systems and command and control systems. Several alternative paths exist in the network because it is connected as a grid to improve its survivability. In addition, the network topology changes frequently as forces and combatants change their network access points while conducting operations. However, most Internet routing standards have been designed for use in stable backbone networks. Therefore, tactical networks may exhibit a deterioration in performance when these standards are implemented. In this paper, we propose Priority based Multi-Path routing with Local Optimization(PMPLO) for a tactical backbone network. The PMPLO separately manages the global and local metrics. The global metric propagates to other routers through the use of a routing protocol, and it is used for a multi-path configuration that is guaranteed to be loop free. The local metric reflects the link utilization that is used to find an alternate path when congestion occurs, and it is managed internally only within each router. It also produces traffic that has a high priority privilege when choosing the optimal path. Finally, we conducted a simulation to verify that the PMPLO can effectively distribute the user traffic among available routers.

EEG Feature Engineering for Machine Learning-Based CPAP Titration Optimization in Obstructive Sleep Apnea

  • Juhyeong Kang;Yeojin Kim;Jiseon Yang;Seungwon Chung;Sungeun Hwang;Uran Oh;Hyang Woon Lee
    • International journal of advanced smart convergence
    • /
    • v.12 no.3
    • /
    • pp.89-103
    • /
    • 2023
  • Obstructive sleep apnea (OSA) is one of the most prevalent sleep disorders that can lead to serious consequences, including hypertension and/or cardiovascular diseases, if not treated promptly. Continuous positive airway pressure (CPAP) is widely recognized as the most effective treatment for OSA, which needs the proper titration of airway pressure to achieve the most effective treatment results. However, the process of CPAP titration can be time-consuming and cumbersome. There is a growing importance in predicting personalized CPAP pressure before CPAP treatment. The primary objective of this study was to optimize the CPAP titration process for obstructive sleep apnea patients through EEG feature engineering with machine learning techniques. We aimed to identify and utilize the most critical EEG features to forecast key OSA predictive indicators, ultimately facilitating more precise and personalized CPAP treatment strategies. Here, we analyzed 126 OSA patients' PSG datasets before and after the CPAP treatment. We extracted 29 EEG features to predict the features that have high importance on the OSA prediction index which are AHI and SpO2 by applying the Shapley Additive exPlanation (SHAP) method. Through extracted EEG features, we confirmed the six EEG features that had high importance in predicting AHI and SpO2 using XGBoost, Support Vector Machine regression, and Random Forest Regression. By utilizing the predictive capabilities of EEG-derived features for AHI and SpO2, we can better understand and evaluate the condition of patients undergoing CPAP treatment. The ability to predict these key indicators accurately provides more immediate insight into the patient's sleep quality and potential disturbances. This not only ensures the efficiency of the diagnostic process but also provides more tailored and effective treatment approach. Consequently, the integration of EEG analysis into the sleep study protocol has the potential to revolutionize sleep diagnostics, offering a time-saving, and ultimately more effective evaluation for patients with sleep-related disorders.

Dose Evaluation of TPS according to Treatment Sites in IMRT (세기조절방사선치료 시 치료 부위에 따른 치료계획 시스템 간 선량평가)

  • Kim, Jin Man;Kim, Jong Sik;Hong, Chae Seon;Park, Ju Young;Park, Su Yeon;Ju, Sang Gyu
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.25 no.2
    • /
    • pp.181-186
    • /
    • 2013
  • Purpose: This study executed therapy plans on prostate cancer (homogeneous density area) and lung cancer (non-homogeneous density area) using radiation treatment planning systems such as $Pinnacle^3$ (version 9.2, Philips Medical Systems, USA) and Eclipse (version 10.0, Varian Medical Systems, USA) in order to quantify the difference between dose calculation according to density in IMRT. Materials and Methods: The subjects were prostate cancer patients (n=5) and lung cancer patients (n=5) who had therapies in our hospital. Identical constraints and optimization process according to the Protocol were administered on the subjects. For the therapy plan of prostate cancer patients, 10 MV and 7Beam were used and 2.5 Gy was prescribed in 28 fx to make 70 Gy in total. For lung cancer patients, 6 MV and 6Beam were used and 2 Gy was prescribed in 33 fx to make 66 Gy in total. Through two therapy planning systems, maximum dose, average dose, and minimum dose of OAR (Organ at Risk) of CTV, PTV and around tumor were investigated. Results: In prostate cancer, both therapy planning systems showed within 2% change of dose of CTV and PTV and normal organs (Bladder, Both femur and Rectum out) near the tumor satisfied the dose constraints. In lung cancer, CTV and PTV showed less than 2% changes in dose and normal organs (Esophagus, Spinal cord and Both lungs) satisfied dose restrictions. However, the minimum dose of Eclipse therapy plan was 1.9% higher in CTV and 3.5% higher in PTV, and in case of both lungs there was 3.0% difference at V5 Gy. Conclusion: Each TPS according to the density satisfied dose limits of our hospital proving the clinical accuracy. It is considered more accurate and precise therapy plan can be made if studies on treatment planning for diverse parts and the application of such TPS are made.

  • PDF

Guideline for Imaging Dose on Image-Guided Radiation Therapy (영상유도방사선치료에 있어 영상선량 가이드라인)

  • Cho, Byung Chul;Huh, Hyun Do;Kim, Jin Sung;Choi, Jin Ho;Kim, Seong Hoon;Cho, Kwang Hwan;Cho, Sam Ju;Min, Chul Kee;Shin, Dong Oh;Lee, Sang Hoon;Park, Dong Wook;Kim, Kum Bae;Choi, Sang Hyoun;Kim, Hye Young;Ahn, Woo-Sang;Kim, Tae Hyeong;Han, Su Cheol
    • Progress in Medical Physics
    • /
    • v.24 no.1
    • /
    • pp.1-24
    • /
    • 2013
  • As image-guided radiation therapy (IGRT) has been commonly used for more accurate patient setup and monitoring tumor movement during radiation therapy, the necessity for management of imaging dose is increased. However, it has not been an interest issue to radiation therapy communities because the imaging dose is much lower than the therapeutic dose. However, since the cumulative dose from 4DCT and repeated imaging for daily setup verificationin would not be ignorable, appropriate dose management based on ALARA (As Low As Reasonably Achievable) principle is required. In this study, we aimed that (1) survey on imaging equipments and modalities used for IGRT, (2) estimation of IGRT imaging dose depending on treatment types and equipments, (3) collecting data of effective dose on treatment sites from each equipment and imaging protocol, and thus finally provide guideline for imaging dose reduction and optimization.

Production of $[^{18}F]F_2$ Gas for Electrophilic Substitution Reaction (친전자성 치환반응을 위한 $[^{18}F]F_2$ Gas의 생산 연구)

  • Moon, Byung-Seok;Kim, Jae-Hong;Lee, Kyo-Chul;An, Gwang-Il;Cheon, Gi-Jeong;Chun, Kwon-Soo
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.40 no.4
    • /
    • pp.228-232
    • /
    • 2006
  • Purpose: electrophilic $^{18}F(T_{1/2}=110\;min)$ radionuclide in the form of $[^{18}F]F_2$ gas is of great significance for labeling radiopharmaceuticals for positron omission tomography (PET). However, its production In high yield and with high specific radioactivity is still a challenge to overcome several problems on targetry. The aim of the present study was to develop a method suitable for the routine production of $[^{18}F]F_2$ for the electrophilic substitution reaction. Materials and Methods: The target was designed water-cooled aluminum target chamber system with a conical bore shape. Production of the elemental fluorine was carried out via the $^{18}O(p,n)^{18}F$ reaction using a two-step irradiation protocol. In the first irradiation, the target filled with highly enriched $^{18}O_2$ was irradiated with protons for $^{18}F$ production, which were adsorbed on the inner surface of target body. In the second irradiation, the mixed gas ($1%[^{19}F]F_2/Ar$) was leaded into the target chamber, fellowing a short irradiation of proton for isotopic exchange between the carrier-fluorine and the radiofluorine absorbed in the target chamber. Optimization of production was performed as the function of irradiation time, the beam current and $^{18}O_2$ loading pressure. Results: Production runs was performed under the following optimum conditions: The 1st irradiation for the nuclear reaction (15.0 bar of 97% enriched $^{18}O_2$, 13.2 MeV protons, 30 ${\mu}A$, 60-90 min irradiation), the recovery of enriched oxygen via cryogenic pumping; The 2nd irradiation for the recovery of absorbed radiofluorine (12.0 bar of 1% $[^{19}F]fluorine/argon$ gas, 13.2 MeV protons, 30 ${\mu}A$, 20-30 min irradiation) the recovery of $[^{18}F]fluorine$ for synthesis. The yield of $[^{18}F]fluorine$ at EOB (end of bombardment) was achieved around $34{\pm}6.0$ GBq (n>10). Conclusion: The production of $^{18}F$ electrophilic agent via $^{18}O(p,n)^{18}F$ reaction was much under investigation. Especially, an aluminum gas target was very advantageous for routine production of $[^{18}F]fluorine$. These results suggest the possibility to use $[^{18}F]F_2$ gas as a electrophilic substitution agent.