• Title/Summary/Keyword: Protocol optimization

Search Result 273, Processing Time 0.024 seconds

A New Route Optimization Scheme for Network Mobility: Combining ORC Protocol with RRH and Using Quota Mechanism

  • Kong, Ruoshan;Feng, Jing;Gao, Ren;Zhou, Huaibei
    • Journal of Communications and Networks
    • /
    • v.14 no.1
    • /
    • pp.91-103
    • /
    • 2012
  • Network mobility (NEMO) based on mobile IP version 6 has been proposed for networks that move as a whole. Route optimization is one of the most important topics in the field of NEMO. The current NEMO basic support protocol defines only the basic working mode for NEMO, and the route optimization problem is not mentioned. Some optimization schemes have been proposed in recent years, but they have limitations. A new NEMO route optimization scheme-involving a combination of the optimized route cache protocol (ORC) and reverse routing header (RRH) and the use of a quota mechanism for optimized sessions (OwR)-is proposed. This scheme focuses on balanced performance in different aspects. It combines the ORC and RRH schemes, and some improvements are made in the session selection mechanism to avoid blindness during route optimization. Simulation results for OwR show great similarity with those for ORC and RRH. Generally speaking, the OwR's performance is at least as good as that of the RRH, and besides, the OwR scheme is capable of setting up optimal routing for a certain number of sessions, so the performance can be improved and the cost of optimal routing in nested NEMO can be decreased.

A Study of method to apply MANET Protocol for Route Optimization in Nested Mobile Network (Nested Mobile Network상의 Route Optimization을 위한 MANET Protocol 적용 방안 연구)

  • Choi, Seung-Won;Kim, Sang-Bok;Kim, Young-Beom
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.269-272
    • /
    • 2005
  • 무선 네트워크 이동성 기술에 대한 연구가 수년간 진행되어 오면서 Mobile Network에 PAN(Personal Area Network)과 유사한 형태의 Nested Mobile Network에 대한 관심이 높아지고 있으며, 이러한 Nested Mobile Network에서의 경로최적화(Route Optimization : RO) 기술에 대한 연구가 활발하게 진행되고 있다. NEMO(NEtwork MObility)의 RO를 위해 제안된 논문 중에 ORC(Optimized Route Cache Protocol)에 대한 제안이 있었다.[1] NEMO Basic Support가 표준안으로 채택되면서 연구 대상에서 거론되지 않고 있지만, 복잡한 이동성 기술인 Nested Mobile Network상의 RO를 위해 다시 검토해 볼 수 있을 것이다. 또한 동일 저자에 의해 제안된 Nested Mobile Network 내부에 Ad-hoc Routing 알고리즘인 OLSR(Optimized Link State Routing Protocol)을 적용한 제안이 발표되었다.[2] 본 논문에서는 ORC와 Nested Mobile Network상의 OLSR Scheme을 적용하여 RO를 위한 방안을 제안하고자 한다.

  • PDF

Integrated NEMO Route Optimization to Improve Security and Communication Path (보안성과 전송 경로를 함께 개선한 NEMO의 통합적인 경로 최적화)

  • Cho, Kyung-San;Shin, Duk-Man
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.5
    • /
    • pp.203-210
    • /
    • 2008
  • Because BSP(Basic Support Protocol) of NEMO(Network Mobility) has important limitation of not providing route optimization, several route optimization schemes have been proposed. By analyzing and improving the limitations of the existing schemes. we Propose an advanced integrated route optimization scheme for the communication through both the internal and external routing of nested NEMO. Our proposal includes a secure route optimization protocol which connects TLMR directly to an external node CN without passing through any HAs. and allows TLMR to control the internal path without passing through the internet. Thus, our scheme can strengthen the security as well as improve the path and delay of NEMO communication.

  • PDF

MCRO-ECP: Mutation Chemical Reaction Optimization based Energy Efficient Clustering Protocol for Wireless Sensor Networks

  • Daniel, Ravuri;Rao, Kuda Nageswara
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.7
    • /
    • pp.3494-3510
    • /
    • 2019
  • Wireless sensor networks encounter energy saving as a major issue as the sensor nodes having no rechargeable batteries and also the resources are limited. Clustering of sensors play a pivotal role in energy saving of the deployed sensor nodes. However, in the cluster based wireless sensor network, the cluster heads tend to consume more energy for additional functions such as reception of data, aggregation and transmission of the received data to the base station. So, careful selection of cluster head and formation of cluster plays vital role in energy conservation and enhancement of lifetime of the wireless sensor networks. This study proposes a new mutation chemical reaction optimization (MCRO) which is an algorithm based energy efficient clustering protocol termed as MCRO-ECP, for wireless sensor networks. The proposed protocol is extensively developed with effective methods such as potential energy function and molecular structure encoding for cluster head selection and cluster formation. While developing potential functions for energy conservation, the following parameters are taken into account: neighbor node distance, base station distance, ratio of energy, intra-cluster distance, and CH node degree to make the MCRO-ECP protocol to be potential energy conserver. The proposed protocol is studied extensively and tested elaborately on NS2.35 Simulator under various senarios like varying the number of sensor nodes and CHs. A comparative study between the simulation results derived from the proposed MCRO-ECP protocol and the results of the already existing protocol, shows that MCRO-ECP protocol produces significantly better results in energy conservation, increase network life time, packets received by the BS and the convergence rate.

Research on Low-energy Adaptive Clustering Hierarchy Protocol based on Multi-objective Coupling Algorithm

  • Li, Wuzhao;Wang, Yechuang;Sun, Youqiang;Mao, Jie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.4
    • /
    • pp.1437-1459
    • /
    • 2020
  • Wireless Sensor Networks (WSN) is a distributed Sensor network whose terminals are sensors that can sense and check the environment. Sensors are typically battery-powered and deployed in where the batteries are difficult to replace. Therefore, maximize the consumption of node energy and extend the network's life cycle are the problems that must to face. Low-energy adaptive clustering hierarchy (LEACH) protocol is an adaptive clustering topology algorithm, which can make the nodes in the network consume energy in a relatively balanced way and prolong the network lifetime. In this paper, the novel multi-objective LEACH protocol is proposed, in order to solve the proposed protocol, we design a multi-objective coupling algorithm based on bat algorithm (BA), glowworm swarm optimization algorithm (GSO) and bacterial foraging optimization algorithm (BFO). The advantages of BA, GSO and BFO are inherited in the multi-objective coupling algorithm (MBGF), which is tested on ZDT and SCH benchmarks, the results are shown the MBGF is superior. Then the multi-objective coupling algorithm is applied in the multi-objective LEACH protocol, experimental results show that the multi-objective LEACH protocol can greatly reduce the energy consumption of the node and prolong the network life cycle.

Enhancement OLSR Routing Protocol using Particle Swarm Optimization (PSO) and Genrtic Algorithm (GA) in MANETS

  • Addanki, Udaya Kumar;Kumar, B. Hemantha
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.131-138
    • /
    • 2022
  • A Mobile Ad-hoc Network (MANET) is a collection of moving nodes that communicate and collaborate without relying on a pre-existing infrastructure. In this type of network, nodes can freely move in any direction. Routing in this sort of network has always been problematic because of the mobility of nodes. Most existing protocols use simple routing algorithms and criteria, while another important criterion is path selection. The existing protocols should be optimized to resolve these deficiencies. 'Particle Swarm Optimization (PSO)' is an influenced method as it resembles the social behavior of a flock of birds. Genetic algorithms (GA) are search algorithms that use natural selection and genetic principles. This paper applies these optimization models to the OLSR routing protocol and compares their performances across different metrics and varying node sizes. The experimental analysis shows that the Genetic Algorithm is better compared to PSO. The comparison was carried out with the help of the simulation tool NS2, NAM (Network Animator), and xgraph, which was used to create the graphs from the trace files.

Authenticated Route Optimization Protocol for Network Mobility Support (네트워크 이동성 지원을 위한 인증된 경로 최적화 프로토콜)

  • Koo, Jung-Doo;Lee, Gi-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.4
    • /
    • pp.781-787
    • /
    • 2007
  • Network Mobility (NEMO) basic support protocol doesn't execute the process of route optimization and has not presented the particular security mechanism in other blocks except hi-directional tunnel between Mobile Router (MR) and its Home Agent (HA). Therefore in this paper we process secure route optimization courses through authenticated binding update protocol between MR and its Correspondent Node (CN) and the protocol of the competency of mandate between MR and its Mobile Network Node (MNN); its block also uses an bi-directional tunnel as the block between MR and its HA. The address of each node are generated by the way of Cryptographically Generated Address (CGA) for proving the ownership of address. Finally we analyze the robustness of proposed protocol using security requirements of MIPv6 and existing attacks and the efficiency of this protocol using the connectivity recovery and end-to-end packet transmission delay time.

  • PDF

Prolong life-span of WSN using clustering method via swarm intelligence and dynamical threshold control scheme

  • Bao, Kaiyang;Ma, Xiaoyuan;Wei, Jianming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.6
    • /
    • pp.2504-2526
    • /
    • 2016
  • Wireless sensors are always deployed in brutal environments, but as we know, the nodes are powered only by non-replaceable batteries with limited energy. Sending, receiving and transporting information require the supply of energy. The essential problem of wireless sensor network (WSN) is to save energy consumption and prolong network lifetime. This paper presents a new communication protocol for WSN called Dynamical Threshold Control Algorithm with three-parameter Particle Swarm Optimization and Ant Colony Optimization based on residual energy (DPA). We first use the state of WSN to partition the region adaptively. Moreover, a three-parameter of particle swarm optimization (PSO) algorithm is proposed and a new fitness function is obtained. The optimal path among the CHs and Base Station (BS) is obtained by the ant colony optimization (ACO) algorithm based on residual energy. Dynamical threshold control algorithm (DTCA) is introduced when we re-select the CHs. Compared to the results obtained by using APSO, ANT and I-LEACH protocols, our DPA protocol tremendously prolongs the lifecycle of network. We observe 48.3%, 43.0%, and 24.9% more percentages of rounds respectively performed by DPA over APSO, ANT and I-LEACH.

Relaying Protocols and Delay Analysis for Buffer-aided Wireless Powered Cooperative Communication Networks

  • Zhan, Jun;Tang, Xiaohu;Chen, Qingchun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.8
    • /
    • pp.3542-3566
    • /
    • 2018
  • In this paper, we investigate a buffer-aided wireless powered cooperative communication network (WPCCN), in which the source and relay harvest the energy from a dedicated power beacon via wireless energy transfer, then the source transmits the data to the destination through the relay. Both the source and relay are equipped with an energy buffer to store the harvested energy in the energy transfer stage. In addition, the relay is equipped with a data buffer and can temporarily store the received information. Considering the buffer-aided WPCCN, we propose two buffer-aided relaying protocols, which named as the buffer-aided harvest-then-transmit (HtT) protocol and the buffer-aided joint mode selection and power allocation (JMSPA) protocol, respectively. For the buffer-aided HtT protocol, the time-averaged achievable rate is obtained in closed form. For the buffer-aided JMSPA protocol, the optimal adaptive mode selection scheme and power allocation scheme, which jointly maximize the time-averaged throughput of system, are obtained by employing the Lyapunov optimization theory. Furthermore, we drive the theoretical bounds on the time-averaged achievable rate and time-averaged delay, then present the throughput-delay tradeoff achieved by the joint JMSPA protocol. Simulation results validate the throughput performance gain of the proposed buffer-aided relaying protocols and verify the theoretical analysis.

Improved Hierarchical Prefix Delegation Protocol for route optimization in nested NEMO (중첩된 NEMO에서의 경로 최적화를 위한 개선된 계층적 프리픽스 할당 프로토콜)

  • Rho, Kyung-Taeg
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.1 s.39
    • /
    • pp.147-155
    • /
    • 2006
  • Hierarchical Prefix Delegation (HPD) protocol refers to a type of solution to problems inherent in non-optimal routing which occurs with Network Mobility (NEMO) basic solution. However, because HPD cannot improve the micro-mobility problems, problem surfaces each time Mobile Network Node (MNN) changes the attachment point; as happens also in a Mobile IPv6 (MIPv6) protocol in sending Binding Update (BU) messages to Home Agent (HA) / Correspondent Nodes(CNs). By applying Hierarchical Mobile IPv6 protocol concept to HPD, this study proposes an algorithm for effectively handling micro-mobility problems which occur with HPD in a nested NEMO environment. By sending BU only to nearby Mobility Anchor Point(MAP) during MNN location change within a MAP's domain, the proposed protocol will alleviate service disruption delays and signaling loads during the handover process, overcoming the limitations of HPD.

  • PDF