• Title/Summary/Keyword: Proteome analysis

Search Result 321, Processing Time 0.025 seconds

A TMT-based quantitative proteomic analysis provides insights into the protein changes in the seeds of high- and low- protein content soybean cultivars

  • Min, Cheol Woo;Gupta, Ravi;Truong, Nguyen Van;Bae, Jin Woo;Ko, Jong Min;Lee, Byong Won;Kim, Sun Tae
    • Journal of Plant Biotechnology
    • /
    • v.47 no.3
    • /
    • pp.209-217
    • /
    • 2020
  • The presence of high amounts of seed storage proteins (SSPs) improves the overall quality of soybean seeds. However, these SSPs pose a major limitation due to their high abundance in soybean seeds. Although various technical advancements including mass-spectrometry and bioinformatics resources were reported, only limited information has been derived to date on soybean seeds at proteome level. Here, we applied a tandem mass tags (TMT)-based quantitative proteomic analysis to identify the significantly modulated proteins in the seeds of two soybean cultivars showing varying protein contents. This approach led to the identification of 5,678 proteins of which 13 and 1,133 proteins showed significant changes in Daewon (low-protein content cultivar) and Saedanbaek (high-protein content cultivar) respectively. Functional annotation revealed that proteins with increased abundance in Saedanbaek were mainly associated with the amino acid and protein metabolism involved in protein synthesis, folding, targeting, and degradation. Taken together, the results presented here provide a pipeline for soybean seed proteome analysis and contribute a better understanding of proteomic changes that may lead to alteration in the protein contents in soybean seeds.

Proteome Analysis of Drosophila melanogaster Used 2-DE and MALDI- TOF-MS (이차원 전기영동과 펩타이드 지문 검색법을 이용한 초파리의 프로테옴 분석)

  • Park Jeong-Won;Cha Jae-Young;Song Jae-Young;Kim Hee-Kyu;Kim Beom-Kyu;Jeon Beong-Sam
    • Journal of Life Science
    • /
    • v.15 no.3 s.70
    • /
    • pp.427-433
    • /
    • 2005
  • With the completely discovery of the Drosophila genome sequence, the next great challenge is to extract its biological information by systematic expression and to perform functional analysis of the gene. Here we reported a proteome analysis of D. melanogaster with two-dimensional electrophoresis (2-DE) and matrix-assisted laser desorption ionization time-of-flight mass spectrometer (MALDI-TOF-MS). The cell extracts of D. melanogaster, $200{\mu}g$ were resolved to more than 400 silver-stained spots by 2-DE. The most abundant protein spots were ranged from 4.0-7.5 of pI and from 15-90 kDa of molecular weight. The excised spots were destained and in-gel digested by trypsin. The masses of the resulting peptide mixtures were measured by MALDI-TOF-MS. Identified proteins were compared with measured peptide mass and a dynamic peptide searching database which is accessible via the internet. The results revealed that identified proteins were produced by 59 genes derived from 65 protein spots.

Spatial protein expression of Panax ginseng by in-depth proteomic analysis for ginsenoside biosynthesis and transportation

  • Li, Xiaoying;Cheng, Xianhui;Liao, Baosheng;Xu, Jiang;Han, Xu;Zhang, Jinbo;Lin, Zhiwei;Hu, Lianghai
    • Journal of Ginseng Research
    • /
    • v.45 no.1
    • /
    • pp.58-65
    • /
    • 2021
  • Background: Panax ginseng, as one of the most widely used herbal medicines worldwide, has been studied comprehensively in terms of the chemical components and pharmacology. The proteins from ginseng are also of great importance for both nutrition value and the mechanism of secondary metabolites. However, the proteomic studies are less reported in the absence of the genome information. With the completion of ginseng genome sequencing, the proteome profiling has become available for the functional study of ginseng protein components. Methods: We optimized the protein extraction process systematically by using SDS-PAGE and one-dimensional liquid chromatography mass spectrometry. The extracted proteins were then analyzed by two-dimensional chromatography separation and cutting-edge mass spectrometry technique. Results: A total of 2,732 and 3,608 proteins were identified from ginseng root and cauline leaf, respectively, which was the largest data set reported so far. Only around 50% protein overlapped between the cauline leaf and root tissue parts because of the function assignment for plant growing. Further gene ontology and KEGG pathway revealed the distinguish difference between ginseng root and leaf, which accounts for the photosynthesis and metabolic process. With in-deep analysis of functional proteins related to ginsenoside synthesis, we interestingly found the cytochrome P450 and UDP-glycosyltransferase expression extensively in cauline leaf but not in the root, indicating that the post glucoside synthesis of ginsenosides might be carried out when growing and then transported to the root at withering. Conclusion: The systematically proteome analysis of Panax ginseng will provide us comprehensive understanding of ginsenoside synthesis and guidance for artificial cultivation.

Proteomics and Microarrays in Cancer Research

  • Kondabagil, Kiran-Rojanna;Kwon, Byoung-Se
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.6
    • /
    • pp.907-914
    • /
    • 2001
  • A whole genome analysis for monitoring specific changes in gene expression, using microarrays or proteome profiling of the same, are the two tools that have already revolutionized current approaches for studying disease. These methods are particularly important in cancer research as there are many overexpressed genes, and their products remain uncharacterized. This article presents a general overview of these technologies and their applications for studying cancer.

  • PDF

Analysis of Apoptotic Evolutional Process by Comparative Proteome (비교단백체 분석을 통한 세포사멸의 진화과정 분석)

  • Kim, Min Jung;Kim, Hak Yong
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2016.05a
    • /
    • pp.193-194
    • /
    • 2016
  • 세포사멸(apoptosis)이란 유전자에 의해 제어되는 세포의 능동적인 죽음을 의미하며 진핵세포만이 가지는 기작으로 세포자살을 일컫는 말이다. 단백질 정보 DB인 UNIPROT으로부터 진핵 생물 종의 세포사멸 단백질(apoptotic protein)을 수집하여 아미노산 서열에 대한 서열비교분석(alignment)을 진행하였다. 그 결과에 따라 다양한 종에 걸쳐 그 서열이 유사하게 유지되는 세포사멸 단백질을 중심단백질로 선정하였다. 비교단백체 분석을 통해서 생물 계통도에서 보여지는 생명종과 이들 단백질과의 연계성을 비교 분석함으로써 단순한 진핵세포에서 점진적으로 확대되는 종까지의 세포사멸 과정을 추론하였다.

  • PDF