• Title/Summary/Keyword: Protein-Coding Region

Search Result 212, Processing Time 0.027 seconds

Induction of RNA-mediated Resistance to Papaya Ringspot Virus Type W

  • Krubphachaya, Pongrit;Juricek, Mila;Kertbundit, Sunee
    • BMB Reports
    • /
    • 제40권3호
    • /
    • pp.404-411
    • /
    • 2007
  • Transformation of cantaloupes with the coat protein (cp) gene of papaya ringspot virus type W (PRSV-W), Thai isolate, was used to introduce virus resistance. Binary vectors containing either the full length coat protein coding region under control of the 35S CaMV promoter(pSA1175), or the inverted-repeat of a coat protein coding region (pSA1304), were constructed and used for Agrobacteriummediated transformation of cotyledonary explants of the cantaloupe cultivar Sun Lady. Four independent transgenic lines were obtained using pSA1304 and one using pSA1175. Integration of the PRSV-W cp gene into the genome of these transgenic lines was verified by PCR amplification, GUS assays and Southern blot hybridization. In vitro inoculation of these lines with PRSV-W revealed that whereas the line containing pSA1175 remained sensitive, the four lines containing pSA1304 were resistant. The presence of small RNA species, presumably siRNA, corresponding to regions of the viral cp gene in transgenic lines resistant to PRSV-W supports the involvement of post-transcriptional gene silencing in the establishment of resistance.

Alfalfa xenomiR-162 targets G protein subunit gamma 11 to regulate milk protein synthesis in bovine mammary epithelial cells

  • Guizhi Meng;Hongjuan Duan;Jingying Jia;Baobao Liu;Yun Ma;Xiaoyan Cai
    • Animal Bioscience
    • /
    • 제37권3호
    • /
    • pp.509-521
    • /
    • 2024
  • Objective: It was shown that microRNAs (miRNAs) play an important role in milk protein synthesis. However, the post-transcriptional regulation of casein expression by exogenous miRNA (xeno-miRNAs) in ruminants remains unclear. This study explores the regulatory roles of alfalfa xeno-miR162 on casein synthesis in bovine mammary epithelial cells (bMECs). Methods: The effects of alfalfa xenomiR-162 and G protein subunit gamma 11 (GNG11) on proliferation and milk protein metabolism of bMECs were detected by 5-Ethynyl-2'-Deoxyuridine (EdU) staining, flow cytometry, cell counting kit-8 (CCK-8), enzyme-linked immunosorbent assay, quantitative real-time polymerase chain reaction (qRT-PCR), and Western blot. Dual-luciferase reporter assay was used to verify the targeting relationship between GNG11 and xenomiR-162. Results: Results showed that over-expression of xenomiR-162 inhibited cell proliferation but promoted apoptosis, which also up-regulated the expression of several casein coding genes, including CSN1S1, CSN1S2, and CSN3, while decreasing the expression of CSN2. Furthermore, the targeting relationship between GNG11 and xenomiR-162 was determined, and it was confirmed that GNG11 silencing also inhibited cell proliferation but promoted apoptosis and reduced the expression of casein coding genes and genes related to the mammalian target of rapamycin (mTOR) pathway. Conclusion: Alfalfa xenomiR-162 appears to regulate bMECs proliferation and milk protein synthesis via GNG11 in the mTOR pathway, suggesting that this xeno-miRNA could be harnessed to modulate CSN3 expression in dairy cows, and increase κ-casein contents in milk.

The Complete Mitochondrial Genome of Pollicipes mitella (Crustacea, Maxillopoda, Cirripedia): Non-Monophylies of Maxillopoda and Crustacea

  • Lim, Jong Tae;Hwang, Ui Wook
    • Molecules and Cells
    • /
    • 제22권3호
    • /
    • pp.314-322
    • /
    • 2006
  • The whole mitochondrial genome (14,915 nt) of Pollicipes mitella (Crustacea, Maxillopoda, Cirripedia, Thoracica) was sequenced and characterized. It is the shortest of the 31 completely sequenced crustacean mitochondrial genomes, with the exception of a copepod Tigriopus japonicus (14,628 nt). It consists of the usual 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes, and 1 relatively short non-coding region (294 nt). The thoracican cirripeds apart from Megabalanus volcano have the same arrangement of protein-coding genes as Limulus polypemus, but there are frequent tRNA gene translocations (at least 8). Some interesting translocation features that may be specific to the thoracican cirriped lineage are as follows: 1) trnK-trnQ lies between the control region and trnI, 2) trnA-trnE lies between trnN and trnS1, 3) trnP lies between ND4L and trnT, and 4) trnY-trnC lies between trnS2 and ND1. In P. mitella there are two trnL genes (L1 and L2) in the typical crustacean positions (ND1-L1-LrRNA and CO1-L2-CO2). The present result is compared and discussed with the other three cirriped mitochondrial genomes from one pedunculate (Pollicipes polymerus) and two sessiles (Tetraclita japonica and M. volcano) published so far. Mitochondrial protein phylogenies reconstructed by the BI and ML algorithms show that the thoracican Cirripedia is monophyletic (BPP 100/BP 100) and associated with Remipedia (BPP 98/BP 35). In addition, Oligostraca, including Ostracoda, Branchiura, and Pentastomida, is a monophyletic group (BPP 99/BP 68), and is basal to all the other examined arthropods. Remipedia + Cirripedia appears as an independent lineage within Arthropoda, apart from Thoracopoda (Malacostraca, Branchiopda, and Cephalocarida). The Thoracopoda is paraphyletic to Hexapoda. The present result suggests that the monophylies of Crustacea and Maxillopoda should be reconsidered.

Secretion of escherichia coli $\beta$-lactamase from bacillus subtilis with the aid of usufully constructed secretion vector

  • Park, Geon-Tae;Rho, Hyun-Mo
    • 미생물학회지
    • /
    • 제30권1호
    • /
    • pp.60-64
    • /
    • 1992
  • The secretion vector with promoter and signal sequence region of neutral protease gene (npr) from Bacillus amyloliquefaciens was constructed by the technique of polymerase chain reaction (PCR). A unique restriction iste was introduced into the 3' of the signal coding region by the synthesis of PCR primer. To demonstrate the function of cloned promoter and signal sequence, we used the E. coli .betha.-lactamase structural gene as a foreign gene. The signal sequence of .betha.-lactamase gene was deleted by Bal31 exonuclease and only mature region was introduced into the secretion vector. Bacillus subtilis cells transformed by the recombinant vector synthesized the fusion protein and were also capable of removing the signal peptide from the original fusion protein, as judged by the assay of .betha.-lactamase activity and secretion into the growth medium by western blotting.

  • PDF

Expression of a Small Protein Encoded by the 3' Flanking Sequence of the Escherichia coli rnpB Gene

  • Kim, Yool;Han, Kook;Lee, Jung-Min;Kim, Kwang-Sun;Lee, Young-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권6호
    • /
    • pp.1010-1014
    • /
    • 2007
  • M1 RNA is the catalytic component of RNase P, a tRNA-processing enzyme in Escherichia coli. M1 RNA is produced in the cell by transcription of the rnpB gene and subsequent processing at the 3' end. The 3' flanking region of rnpB contains repeated sets of overlapping sequences coding for small proteins. The issue of whether these proteins are expressed remains to be established. In this study, we showed the expression of a small protein encoded by the first repeat within the 3' flanking region of rnpB. Interestingly, protein expression was increased at lower temperatures. The termination efficiency of rnpB terminators was decreased at lower temperatures, suggesting that antitermination is responsible for enhanced protein expression. Moreover, the purified small protein contained M1 RNA, implying a role as a specific RNA-binding protein.

The Complete Mitochondrial Genome of Dendronephthya gigantea (Anthozoa: Octocorallia: Nephtheidae)

  • Park, Eun-Ji;Kim, Bo-A;Won, Yong-Jin
    • Animal Systematics, Evolution and Diversity
    • /
    • 제26권3호
    • /
    • pp.197-201
    • /
    • 2010
  • We sequenced the whole mitochondrial genome of Dendronephthya gigantea (Anthozoa: Octocorallia: Nephteidae), the first mitochondrial genome sequence report in the Family Nephtheidae. The mitochondrial genome of D. gigantea was 18,842 bp in length, and contained 14 protein coding genes (atp6 and 8, cox1-3, cytb, nd1-6 and 4L, and msh1), two ribosomal RNAs, and only one transfer RNA. The gene content and gene order is identical to other octocorals sequenced to date. The portion of the noncoding regions is slightly larger than the other octocorals (5.08% compared to average 3.98%). We expect that the information of gene content, gene order, codon usage, noncoding region and protein coding gene sequence could be used in the further analysis of anthozoan phylogeny.

Comparative Genomics of T-complex protein 10 like in Humans and Chimpanzees

  • Kim, Il-Chul;Kim, Dae-Soo;Kim, Dae-Won;Choi, Sang-Haeng;Choi, Han-Ho;Chae, Sung-Hwa;Park, Hong-Seog
    • Genomics & Informatics
    • /
    • 제3권2호
    • /
    • pp.61-65
    • /
    • 2005
  • Comparing 231 genes on chimpanzee chromosome 22 with their orthologous on human chromosome 21, we have found that 15 orthologs have indels within their coding sequences. It was rather surprising that significant number of genes have changed by indel, despite the shorter time since their divergence and led us hypothesize that indels and structural changes may represent one of the major mechanism of proteome evolution in the higher primates. Human T-complex protein 10 like (TCP 10L) is a representative having indel within its coding sequence. Gene structure of human TCP10L compared with chimpanzee TCP10L gene showed 16 base pair difference in genomic DNA. As a result of the indel, frame shift mutation occurs in coding sequence (CDS) and human TCP10L express longer polypeptide of 21 amino acid residues than that of chimpanzee. Our prediction found that the indel may affect to dramatic change of secondary protein structure between human and chimpanzee TCP10L. Especially, the structural changes in the C-terminal region of TCP10L protein may affect on the interacting potential to other proteins rather than DNA binding function of the protein. Through these changes, TCP10L might influence gene expression profiles in liver and testis and subsequently influence the physiological changes required in primate evolution.

Nucleotide Sequence Analysis of an Endo-Xylanase Gene (xynA) from Bacillus stearothermophilus

  • Cho, Ssang-Goo;Choi, Yong-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • 제5권3호
    • /
    • pp.117-124
    • /
    • 1995
  • A gene (xynA) encoding the endo-xylanase (E.C.3.2.1.8) from Bacillus stearothermophilus was cloned in E. coli, and its complete nucleotide sequence was determined. The xynA gene consists of a 636 base pairs open reading frame coding for a protein of 212 amino acids with a deduced molecular weight of 23, 283 Da. A putative signal sequence of 27 amino acid residues shows the features comparable with the Bacillus signal sequences; namely, the signal contains a positively charged region close to the N-terminus followed by a long hydrophobic string. The coding sequence is preceded by a possible ribosome binding site with a free energy value of -16.6 kcal/mol and the transcription initiation signals are located further upstream. The translation termination codon (TAA) at the 3 end of the coding sequence is followed by two palindrome sequences, one of which is thought to act as a terminator. The xynA gene has a high GC content, especially in the wobble position of codons (64%). Comparison of the primary protein sequence with those of other xylanases shows a high homology to the xylanases belonging to family G.

  • PDF

Complete Mitochondrial Genome of Echinostoma hortense (Digenea: Echinostomatidae)

  • Liu, Ze-Xuan;Zhang, Yan;Liu, Yu-Ting;Chang, Qiao-Cheng;Su, Xin;Fu, Xue;Yue, Dong-Mei;Gao, Yuan;Wang, Chun-Ren
    • Parasites, Hosts and Diseases
    • /
    • 제54권2호
    • /
    • pp.173-179
    • /
    • 2016
  • Echinostoma hortense (Digenea: Echinostomatidae) is one of the intestinal flukes with medical importance in humans. However, the mitochondrial (mt) genome of this fluke has not been known yet. The present study has determined the complete mt genome sequences of E. hortense and assessed the phylogenetic relationships with other digenean species for which the complete mt genome sequences are available in GenBank using concatenated amino acid sequences inferred from 12 protein-coding genes. The mt genome of E. hortense contained 12 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes, and 1 non-coding region. The length of the mt genome of E. hortense was 14,994 bp, which was somewhat smaller than those of other trematode species. Phylogenetic analyses based on concatenated nucleotide sequence datasets for all 12 protein-coding genes using maximum parsimony (MP) method showed that E. hortense and Hypoderaeum conoideum gathered together, and they were closer to each other than to Fasciolidae and other echinostomatid trematodes. The availability of the complete mt genome sequences of E. hortense provides important genetic markers for diagnostics, population genetics, and evolutionary studies of digeneans.