• Title/Summary/Keyword: Protein kinase D

Search Result 397, Processing Time 0.025 seconds

Zearalenone exposure affects the Wnt/β-catenin signaling pathway and related genes of porcine endometrial epithelial cells in vitro

  • Song, Tingting;Yang, Weiren;Huang, Libo;Yang, Zaibin;Jiang, Shuzhen
    • Animal Bioscience
    • /
    • v.34 no.6
    • /
    • pp.993-1005
    • /
    • 2021
  • Objective: Zearalenone (ZEA) has estrogen-like effects. Our previous study has shown that ZEA (0.5 to 1.5 mg/kg) could induce abnormal uterine proliferation through transforming growth factor signaling pathway. To further study the other regulatory networks of uterine hypertrophy caused by ZEA, the potential mechanism of ZEA on porcine endometrial epithelial cells (PECs) was explored by the Illumina Hiseq 2000 sequencing system. Methods: The PECs were treated with ZEA at 0 (ZEA0), 5 (ZEA5), 20 (ZEA20), and 80 (ZEA80) µmol/L for 24 h. The collected cells were subjected to cell cycle, RNA-seq, real-time quantitative polymerase chain reaction, immunofluorescence, and western blot analysis. Results: The proportion of cells in the S and G2 phases decreased (p<0.05), but the proportion of cells in the G1 phase increased (p<0.05) in the ZEA80 treatment. Data analysis revealed that the expression of Wnt pathway-related genes, estrogen-related genes, and mitogen-activated protein kinase pathway-related genes increased (p<0.05), but the expression of genetic stability genes decreased (p<0.05) with increasing ZEA concentrations. The relative mRNA and protein expression of WNT1, β-catenin, glycogen synthase kinase 3β (GSK-3β) were increased (p<0.05) with ZEA increasing, while the relative mRNA and protein expression of cyclin D1 (CCND1) was decreased (p<0.05). Moreover, our immunofluorescence results indicate that β-catenin accumulated around the nucleus from the cell membrane and cytoplasm with increasing ZEA concentrations. Conclusion: In summary, ZEA can activate the Wnt/β-catenin signaling pathway by up-regulating WNT1 and β-catenin expression, to promote the proliferation and development of PECs. At the same time, the up-regulation of GSK-3β and down-regulation of CCND1, as well as the mRNA expression of other pathway related genes indicated that other potential effects of ZEA on the uterine development need further study.

Effects of an in vitro vitamin D treatment on the inflammatory responses in visceral adipose tissue from Ldlr-/- mice

  • Deok Hoon Kwon;Jungwon Hwang;Hyeyoung You;Na Young Kim;Ga Young Lee;Sung Nim Han
    • Nutrition Research and Practice
    • /
    • v.18 no.1
    • /
    • pp.19-32
    • /
    • 2024
  • BACKGROUND/OBJECTIVES: Atherosclerosis is associated with increased inflammation in the visceral adipose tissue (VAT). Vitamin D has been reported to modulate the inflammatory responses of stromal vascular cells (SVCs) and adipocytes in adipose tissue, but the role of vitamin D in atherosclerosis biology is unclear. This study examined the effects of in vitro 1,25-dihydroxyvitamin D3 (1,25[OH]2D3) treatment on the inflammatory responses of SVCs and adipocytes from atherosclerotic mice. MATERIALS/METHODS: C57BL/6J (B6) mice were divided randomly into 2 groups and fed a 10% kcal fat control diet (control group, CON) or 41% kcal fat, 0.21% cholesterol (high fat + cholesterol, HFC) diet (obese group, OB), and B6.129S7-Ldlrtm1Her/J (Ldlr-/-) mice were fed a HFC diet (obese with atherosclerosis group, OBA) for 16 weeks. SVCs and adipocytes isolated from VAT were pre-incubated with 1,25(OH)2D3 for 24 h and stimulated with lipopolysaccarides for the next 24 h. Proinflammatory cytokine production by adipocytes and SVCs, the immune cell population in SVCs, and the expression of the genes involved in the inflammatory signaling pathway in SVCs were determined. RESULTS: The numbers of total macrophages and SVCs per mouse were higher in OB and OBA groups than the CON group. The in vitro 1,25(OH)2D3 treatment significantly reduced macrophages/SVCs (%) in the OBA group. Consistent with this change, the production of interleukin-6 and monocyte chemoattractant protein 1 (MCP-1) by SVCs from the OBA group was decreased by 1,25(OH)2D3 treatment. The 1,25(OH)2D3 treatment significantly reduced the toll-like receptor 4 and dual-specificity protein phosphatase 1 (also known as mitogen-activated protein kinase phosphatase 1) mRNA levels in SVCs and MCP-1 production by adipocytes from all 3 groups. CONCLUSIONS: These findings suggest that vitamin D can attribute to the inhibition of the inflammatory response in VAT from atherosclerotic mice by reducing proinflammatory cytokine production.

Growth hormone-releasing peptide-biotin conjugate stimulates myocytes differentiation through insulin-like growth factor-1 and collagen type I

  • Lim, Chae Jin;Jeon, Jung Eun;Jeong, Se Kyoo;Yoon, Seok Jeong;Kwon, Seon Deok;Lim, Jina;Park, Keedon;Kim, Dae Yong;Ahn, Jeong Keun;Kim, Bong-Woo
    • BMB Reports
    • /
    • v.48 no.9
    • /
    • pp.501-506
    • /
    • 2015
  • Based on the potential beneficial effects of growth hormone releasing peptide (GHRP)-6 on muscle functions, a newly synthesized GHRP-6-biotin conjugate was tested on cultured myoblast cells. Increased expression of myogenic marker proteins was observed in GHRP-6-biotin conjugate-treated cells. Additionally, increased expression levels of insulin-like growth factor-1 and collagen type I were observed. Furthermore, GHRP-6-biotin conjugate-treated cells showed increased metabolic activity, as indicated by increased concentrations of energy metabolites, such as ATP and lactate, and increased enzymatic activity of lactate dehydrogenase and creatine kinase. Finally, binding protein analysis suggested few candidate proteins, including desmin, actin, and zinc finger protein 691 as potential targets for GHRP6-biotin conjugate action. These results suggest that the newly synthesized GHRP-6-biotin conjugate has myogenic stimulating activity through, at least in part, by stimulating collagen type I synthesis and several key proteins. Practical applications of the GHRP-6-biotin conjugate could include improving muscle condition. [BMB Reports 2015; 48(9): 501-506]

Study on the Anti-inflammatory Effect and Mechanism of Prunus mume Extract Regarding NF-κB (NF-κB 조절을 통한 오매추출물의 항염효과 및 작용기작에 관한 연구)

  • Seo, Won-Sang;Oh, Han-Na;Park, Woo-Jung;Um, Sang-Young;Lee, Dae-Woo;Kang, Sang-Mo
    • KSBB Journal
    • /
    • v.29 no.1
    • /
    • pp.50-57
    • /
    • 2014
  • NF-${\kappa}B$ is a transcriptional factor which is involved in many biological processes including immunity, inflammation, and cell survival. Many investigators studied on the mechanism involved in activation of NF-${\kappa}B$ signalling pathway via ubiquitination and degradation of $I{\kappa}B$ regarding skin disease. Some specific molecules including Akt, MEK, p38 MAP Kinase, Stat3, et al. represent convergence points and key regulatory proteins in signaling pathways controlling cellular events such as growth and differentiation, energy homeostasis, and the response to stress and inflammation. Ultraviolet (UV) irradiation has many adverse effects on skin, including inflammation, alteration in the extracellular matrix, cellular senescence, apoptosis and skin cancer. Prunus mume, a naturally derived plant extract, has beneficial biological activities as blood fluidity improvement, anti-fatigue action, antioxidative and free radical scavenging activities, inhibiting the motility of Helicobacter pyolri. Previous reports on various beneficial function prompted us to investigate UVB-induced or other immunostimulated biological marker regarding P. mume extract. P. mume extract suppresses UVB-induced cyclooxygenase-2 (COX-2) expression in mouse skin epidermal JB6 P+ cells. The activation of activator protein-1 and nuclear factor-${\kappa}B$ induced by UVB was dose-dependently inhibited by P. mume extract treatment. This results suggest that P. mume extracts might be used as a potential agents for protection of inflammation or UVB induced skin damage.

Trichostatin A Protects Liver against Septic Injury through Inhibiting Toll-Like Receptor Signaling

  • Kim, So-Jin;Park, Jin-Sook;Lee, Do-Won;Lee, Sun-Mee
    • Biomolecules & Therapeutics
    • /
    • v.24 no.4
    • /
    • pp.387-394
    • /
    • 2016
  • Sepsis, a serious clinical problem, is characterized by a systemic inflammatory response to infection and leads to organ failure. Toll-like receptor (TLR) signaling is intimately implicated in hyper-inflammatory responses and tissue injury during sepsis. Histone deacetylase (HDAC) inhibitors have been reported to exhibit anti-inflammatory properties. The aim of this study was to investigate the hepatoprotective mechanisms of trichostatin A (TSA), a HDAC inhibitor, associated with TLR signaling pathway during sepsis. The anti-inflammatory properties of TSA were assayed in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Polymicrobial sepsis was induced in mice by cecal ligation and puncture (CLP), a clinically relevant model of sepsis. The mice were intraperitoneally received TSA (1, 2 or 5 mg/kg) 30 min before CLP. The serum and liver samples were collected 6 and 24-h after CLP. TSA inhibited the increased production of tumor necrosis factor (TNF)-${\alpha}$ and interleukin (IL)-6 in LPS-stimulated RAW264.7 cells. TSA improved sepsis-induced mortality, attenuated liver injury and decreased serum TNF-${\alpha}$ and IL-6 levels. CLP increased the levels of TLR4, TLR2 and myeloid differentiation primary response protein 88 (MyD88) protein expression and association of MyD88 with TLR4 and TLR2, which were attenuated by TSA. CLP increased nuclear translocation of nuclear factor kappa B and decreased cytosolic inhibitor of kappa B ($I{\kappa}B$) protein expression, which were attenuated by TSA. Moreover, CLP decreased acetylation of $I{\kappa}B$ kinase (IKK) and increased association of IKK with $I{\kappa}B$ and TSA attenuated these alterations. Our findings suggest that TSA attenuates liver injury by inhibiting TLR-mediated inflammatory response during sepsis.

Cripto Enhances Proliferation and Survival of Mesenchymal Stem Cells by Up-Regulating JAK2/STAT3 Pathway in a GRP78-Dependent Manner

  • Yun, SeungPil;Yun, Chul Won;Lee, Jun Hee;Kim, SangMin;Lee, Sang Hun
    • Biomolecules & Therapeutics
    • /
    • v.26 no.5
    • /
    • pp.464-473
    • /
    • 2018
  • Cripto is a small glycosylphosphatidylinositol-anchored signaling protein that can detach from the anchored membrane and stimulate proliferation, migration, differentiation, vascularization, and angiogenesis. In the present study, we demonstrated that Cripto positively affected proliferation and survival of mesenchymal stem cells (MSCs) without affecting multipotency. Cripto also increased expression of phosphorylated janus kinase 2 (p-JAK2), phosphorylated signal transducer and activator of transcription 3 (p-STAT3), 78 kDa glucose-regulated protein (GRP78), c-Myc, and cyclin D1. Notably, treatment with an anti-GRP78 antibody blocked these effects. In addition, pretreatment with STAT3 short interfering RNA (siRNA) inhibited the increase in p-JAK2, c-Myc, cyclin D1, and BCL3 levels caused by Cripto and attenuated the pro-survival action of Cripto on MSCs. We also found that incubation with Cripto protected MSCs from apoptosis caused by hypoxia or $H_2O_2$ exposure, and the level of caspase-3 decreased by the Cripto-induced expression of B-cell lymphoma 3-encoded protein (BCL3). These effects were sensitive to down-regulation of BCL3 expression by BCL3 siRNA. Finally, we showed that Cripto enhanced expression levels of vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), and hepatocyte growth factor (HGF). In summary, our results demonstrated that Cripto activated a novel biochemical cascade that potentiated MSC proliferation and survival. This cascade relied on phosphorylation of JAK2 and STAT3 and was regulated by GRP78. Our findings may facilitate clinical applications of MSCs, as these cells may benefit from positive effects of Cripto on their survival and biological properties.

Studies on the phosphotyrsine-proteins in the rat cerbellar PSD fraction (흰쥐 소뇌 연접후치밀질내 phosphotryrosine 함유 단백질에 대한 연구)

  • 전일수;함소희;고복현
    • Journal of Life Science
    • /
    • v.7 no.3
    • /
    • pp.198-204
    • /
    • 1997
  • The signal transduction through tyrosine kinases play important roles in neuronal development and synaptic regulation. We carried out immunoblot analyses to study tyrosine=phosphorylated proteins in the rat cerebellar postsynaptic density (PSD), a protein-rich cytoskeletal specialization underlying beneath the postsynaptic membrane. The overall protein composition of cerebellar PSD fractions was similar to that of the forebrain’s and only a few bands were different in Coomassie stain. Immunoblot analyses with phosphtyrosine-specific antiboy (4G10) showed that there are many more tyrosine-phosphorylated proteins in the cerebellar PSD than in the forebrain PSD. Interestiingly, a major phosphotyrosine signals in cerebellar PSD fractions was associated with a 50 kD molecular size, named as PSD-50. Migration of PSD-50 coincided with that of $\alpha$CaMKII and remained in the pellet fraction after N-octylglucoside extraction. These results indicate that tyrosine phosphorylation is important in cerebellar synaptic regulation and that the PSD-50 may be same as $\alpha$CaMKIIor a new protein which is a major substrate of tyrosine kinase.

  • PDF

The Memory-Enhancing Effects of Liquiritigenin by Activation of NMDA Receptors and the CREB Signaling Pathway in Mice

  • Ko, Yong-Hyun;Kwon, Seung-Hwan;Hwang, Ji-Young;Kim, Kyung-In;Seo, Jee-Yeon;Nguyen, Thi-Lien;Lee, Seok-Yong;Kim, Hyoung-Chun;Jang, Choon-Gon
    • Biomolecules & Therapeutics
    • /
    • v.26 no.2
    • /
    • pp.109-114
    • /
    • 2018
  • Liquiritigenin (LQ) is a flavonoid that can be isolated from Glycyrrhiza radix. It is frequently used as a tranditional oriental medicine herbal treatment for swelling and injury and for detoxification. However, the effects of LQ on cognitive function have not been fully explored. In this study, we evaluated the memory-enhancing effects of LQ and the underlying mechanisms with a focus on the N-methyl-D-aspartic acid receptor (NMDAR) in mice. Learning and memory ability were evaluated with the Y-maze and passive avoidance tests following administration of LQ. In addition, the expression of NMDAR subunits 1, 2A, and 2B; postsynaptic density-95 (PSD-95); phosphorylation of $Ca^{2+}$/calmodulin-dependent protein kinase II (CaMKII); phosphorylation of extracellular signal-regulated kinase 1/2 (ERK 1/2); and phosphorylation of cAMP response element binding (CREB) proteins were examined by Western blot. In vivo, we found that treatment with LQ significantly improved memory performance in both behavioral tests. In vitro, LQ significantly increased NMDARs in the hippocampus. Furthermore, LQ significantly increased PSD-95 expression as well as CaMKII, ERK, and CREB phosphorylation in the hippocampus. Taken together, our results suggest that LQ has cognition enhancing activities and that these effects are mediated, in part, by activation of the NMDAR and CREB signaling pathways.

Inhibitory mechanism of ginsenoside Rh3 on granulocyte-macrophage colony-stimulating factor expression in UV-B-irradiated murine SP-1 keratinocytes

  • Park, Young Sun;Lee, Ji Eun;Park, Jong Il;Myung, Cheol hwan;Lim, Young-Ho;Park, Chae Kyu;Hwang, Jae Sung
    • Journal of Ginseng Research
    • /
    • v.44 no.2
    • /
    • pp.274-281
    • /
    • 2020
  • Background: Ultraviolet (UV) goes through the epidermis and promotes release of inflammatory cytokines in keratinocytes. Granulocyte-macrophage colony-stimulating factor (GM-CSF), one of the keratinocyte-derived cytokines, regulates proliferation and differentiation of melanocytes. Extracellular signal-regulated kinase (ERK1/2) and protein kinase C (PKC) signaling pathways regulate expression of GM-CSF. Based on these results, we found that ginsenoside Rh3 prevented GM-CSF production and release in UV-B-exposed SP-1 keratinocytes and that this inhibitory effect resulted from the reduction of PKCδ and ERK phosphorylation. Methods: We investigated the mechanism by which ginsenoside Rh3 from Panax ginseng inhibited GM-CSF release from UV-B-irradiated keratinocytes. Results: Treatment with 12-O-tetradecanoylphorbol-13-acetate (TPA) or UV-B induced release of GM-CSF in the SP-1 keratinocytes. To elucidate whether the change in GM-CSF expression could be related to PKC signaling, the cells were pretreated with H7, an inhibitor of PKC, and irradiated with UV-B. GM-CSF was decreased by H7 in a dose-dependent manner. When we analyzed which ginsenosides repressed GM-CSF expression among 15 ginsenosides, ginsenoside Rh3 showed the largest decline to 40% of GM-CSF expression in enzyme-linked immunosorbent assay. Western blot analysis showed that TPA enhanced the phosphorylation of PKCδ and ERK in the keratinocytes. When we examined the effect of ginsenoside Rh3, we identified that ginsenoside Rh3 inhibited the TPA-induced phosphorylation levels of PKCδ and ERK. Conclusion: In summary, we found that ginsenoside Rh3 impeded UV-B-induced GM-CSF production through repression of PKCδ and ERK phosphorylation in SP-1 keratinocytes.

MAP Kinase-Mediated Negative Regulation of Symbiotic Nodule Formation in Medicago truncatula

  • Ryu, Hojin;Laffont, Carole;Frugier, Florian;Hwang, Ildoo
    • Molecules and Cells
    • /
    • v.40 no.1
    • /
    • pp.17-23
    • /
    • 2017
  • Mitogen-activated protein kinase (MAPK) signaling cascades play critical roles in various cellular events in plants, including stress responses, innate immunity, hormone signaling, and cell specificity. MAPK-mediated stress signaling is also known to negatively regulate nitrogen-fixing symbiotic interactions, but the molecular mechanism of the MAPK signaling cascades underlying the symbiotic nodule development remains largely unknown. We show that the MtMKK5-MtMPK3/6 signaling module negatively regulates the early symbiotic nodule formation, probably upstream of ERN1 (ERF Required for Nodulation 1) and NSP1 (Nod factor Signaling Pathway 1) in Medicago truncatula. The overexpression of MtMKK5 stimulated stress and defense signaling pathways but also reduced nodule formation in M. truncatula roots. Conversely, a MAPK specific inhibitor, U0126, enhanced nodule formation and the expression of an early nodulation marker gene, MtNIN. We found that MtMKK5 directly activates MtMPK3/6 by phosphorylating the TEY motif within the activation loop and that the MtMPK3/6 proteins physically interact with the early nodulation-related transcription factors ERN1 and NSP1. These data suggest that the stress signaling-mediated MtMKK5/MtMPK3/6 module suppresses symbiotic nodule development via the action of early nodulation transcription factors.