• 제목/요약/키워드: Protein kinase C-${\delta}$

검색결과 50건 처리시간 0.026초

알레르기 림프구에서 집먼지진드기 알러젠의 PAR2/PKCδ/p38 MAPK 경로를 통한 사이토카인 증가는 호중구의 세포고사를 억제시킨다 (House Dust Mite Allergen Inhibits Constitutive Neutrophil Apoptosis by Cytokine Secretion via PAR2/PKCδ/p38 MAPK Pathway in Allergic Lymphocytes)

  • 이나래;이지숙;김인식
    • 대한임상검사과학회지
    • /
    • 제48권3호
    • /
    • pp.188-195
    • /
    • 2016
  • 본 연구에서는 집먼지 진드기 추출물은 호중구에 단독으로 작용하는 것보다, 림프구와 호중구의 공동배양에서 호중구의 세포고사를 더 억제시켰다. 집먼지 진드기는 알레르기 질환의 림프구에서 IL-6, IL-8, MCP-1, GM-CSF의 분비를 증가시켰다. 집먼지 진드기에 의해 증가된 사이토카인은 protein kinase C ${\delta}$의 억제제인 rottlerin과 p38 MAPK의 억제제인 SB202190에 의해서 감소하였다. 집먼지 진드기에 의해 활성화된 p38 MAPK은 protease-activated receptor (PAR2)의 억제제, rottlerin, SB202190에 의해서 억제되었다. Serine protease 억제제인 aprotinin과 cysteine protease 억제제인 E64은 림프구의 사이토카인의 증가와 관련이 없었다. 또한 집먼지 진드기에 의해 증가된 사이토카인의 변화는 천식과 알레르기 비염 환자에서 차이가 없었다. 림프구에서 집먼지진드기에 의해서 분비되는 분자들은 호중구의 유주운동을 억제시켰다. 본 연구를 통하여 집먼지진드기에 의해 유발되는 알레르기 질환의 병인기전을 규명하는데 유용한 결과가 될 것이다.

C형 간염바이러스의 core 단백질에 의해 암화된 쥐의 섬유아세포에서 phospholipase D 효소활성의 증가 (Phospholipase D Activity is Elevated in Hepatitis C Virus Core Protein-Transformed NIH 3T3 Mouse Fibroblast Cells)

  • Kim, Joonmo;Jung, Eun-Young;Jang, Kyung-Lib;Min, Do-Sik
    • 생명과학회지
    • /
    • 제13권5호
    • /
    • pp.551-558
    • /
    • 2003
  • C형 간염바이러스는 간암을 야기하는 심각한 바이러스이다. C형 간염바이러스의 core 단백질의 과발현은 섬유아세포를 암화시키는 것으로 알려져 있다. Phospholipase D (PLD)의 효소활성이 세포증식 신호전달에 의해 활성화되어 있으며, 사람의 암조직에서 과발현 및 활성이 증가되어 있는 것으로 알려져 있다. 본 연구의 목적은, core 단백질에 의해 암화된 세포에서 PLD가 어떻게 조절되는지를 이해하고자 하는 것이다. 자극이 없는 상태에서뿐만 아니라 PMA에 의해 유도되는 PLD효소활성은, 암화된 세포에서 더 증가하였으며, control 세포와 core 단백질에 의해 암화된 세포에서 PLD와 PKC 단백질의 발현은 서로 유사하였다. PKC 특이적인 억제제와 PKC의 세포막으로의 이동에 관한 실험을 통해서, PKC-d가 암화된 세포에서 PMA에 의해 유도되는 PLD활성의 증가에 중요하게 관여하고 있음을 밝혔다. 이러한 결과는, PLD가 core 단백질에 의해 유도되는 세포의 암화과정에 관여하고 있을 것으로 추정된다.

Upregulation of Lipopolysaccharide-Induced Interleukin-10 by Prostaglandin $A_1$ in Mouse Peritoneal Macrophages

  • Kim, Hyo-Young;Kim, Jae-Ryong;Kim, Hee-Sun
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권6호
    • /
    • pp.1170-1178
    • /
    • 2008
  • The cyclopentenone prostaglandins (cyPGs) prostaglandin $A_1$ ($PGA_1$) and 15-deoxy-${\Delta}^{12,14}$-prostaglandin $J_2$ (15d-$PGJ_2$) have been reported to exhibit antiinflammatory activity in activated monocytes/macrophages. However, the effects of these two cyPGs on the expression of cytokine genes may differ. In this study, we investigated the mechanism of action of $PGA_1$ in lipopolysaccharide (LPS)-induced expression of inter leu kin (IL)-10 mRNA in mouse peritoneal macrophages. 15d-$PGJ_2$ inhibited expression of LPS-induced IL-10, whereas $PGA_1$ increased LPS-induced IL-10 expression. This synergistic effect of $PGA_1$ on LPS-induced IL-10 expression reached a maximum as early as 2 h after simultaneous $PGA_1$ and LPS treatment ($PGA_1$/LPS), and did not require new protein synthesis. The synergistic effect of $PGA_1$ was inhibited by GW9662, a specific peroxisome proliferator-activated receptor ${\gamma}(PPAR{\gamma})$ antagonist, and Bay-11-7082, a NF-${\kappa}B$ inhibitor. The extracellular signal-regulated kinases (ERK) inhibitor PD98059 increased the expression of $PGA_1$/LPS-induced IL-10 mRNA, rather than inhibiting the IL-10 expression. Moreover, $PGA_1$ inhibited LPS-induced ERK phosphorylation. The synergistic effect of $PGA_1$ on LPS-induced IL-10 mRNA and protein production was inhibited by p38 inhibitor PD169316, and $PGA_1$ increased LPS-induced p38 phosphorylation. In the case of stress-activated protein kinase/c-Jun $NH_2$-terminal kinase (SAPK/JNK), the SAPK/JNK inhibitor SP600125 did not inhibit IL-10 mRNA synthesis but inhibited the production of IL-10 protein remarkably. These results suggest that the synergistic effect of $PGA_1$ on LPS-induced IL-10 expression is NF-${\kappa}B$-dependent and mediated by mitogen-activated protein (MAP) kinases, p38, and SAPK/JNK signaling pathways, and also associated with the $PPAR{\gamma}$ pathway. Our data may provide more insight into the diverse mechanisms of $PGA_1$ effects on the expression of cytokine genes.

제2형 당뇨 동물모델에서 가시오가피 추출물의 당화혈색소 및 최종당화산물 억제를 통한 혈당조절 효과 (Beneficial Effects of Acanthopanax senticosus Extract in Type II Diabetes Animal Model via Down-Regulation of Advanced Glycated Hemoglobin and Glycosylation End Products)

  • 권한올;이민희;김용재;김은;김옥경
    • 한국식품영양과학회지
    • /
    • 제45권7호
    • /
    • pp.929-937
    • /
    • 2016
  • 본 연구에서는 랫트를 이용한 제2형 당뇨 동물모델로 같은 혈당조절 효과가 나타나는지 검토하고 이러한 효과가 당화 혈색소를 포함한 최종당화산물(advanced glycation end products, AGEs)과 어떤 상관관계가 있는지 또한 단백질과 당화를 촉진해 당화혈색소 생성의 원인 중 하나인 산화적 스트레스와 관련된 기전을 규명하고자 하였다. 기존의 db/db 마우스에서 실험한 결과와 마찬가지로 랫트를 이용한 제2형 당뇨모델에서도 가시오가피 추출물의 섭취는 혈당을 강하시키고 homeostasis model assessment(Homa-IR)를 감소시켜 인슐린 저항성 개선에 도움을 주는 것으로 확인되었다. 특히 혈중 당화혈색소량의 감소가 두드러졌는데 이는 산화적 스트레스 감소로 인한 지질과산화물 생성의 억제가 중요한 원인으로 생각되며 이와 관련된 혈중 사이토카인 IL-$1{\beta}$와 TNF-${\alpha}$의 농도도 감소한 것으로 나타났다. 당화혈색소는 산화적 스트레스에 의해 최종당화산물로 전환이 되어 인슐린 저항성 세포의 protein kinase C(PKC)를 활성화하여 transforming growth factor(TGF)-${\beta}$를 생성하는데 가시오가피 추출물의 섭취는 최종당화산물의 농도, PKC 그리고 TGF-${\beta}$ 모두를 억제하는 것으로 확인되었으며, 이것은 가시오가피 추출물 성분이 PKC와 TGF-${\beta}$에 직접 작용하기보다는 신호전달체계의 상위에 존재하는 최종당화산물을 억제하여 나타난 결과로 생각한다. 향후 연구에서는 가시오가피 추출물을 분획화하여 어떤 성분에 의하여 당화혈색소와 최종당화산물 생성을 억제하는지에 대한 구체적인 실험이 이루어져야 할 것으로 여겨진다.

Ginsenoside compound K protects human umbilical vein endothelial cells against oxidized low-density lipoprotein-induced injury via inhibition of nuclear factor-κB, p38, and JNK MAPK pathways

  • Lu, Shan;Luo, Yun;Zhou, Ping;Yang, Ke;Sun, Guibo;Sun, Xiaobo
    • Journal of Ginseng Research
    • /
    • 제43권1호
    • /
    • pp.95-104
    • /
    • 2019
  • Background: Oxidized low-density lipoprotein (ox-LDL) causes vascular endothelial cell inflammatory response and apoptosis and plays an important role in the development and progression of atherosclerosis. Ginsenoside compound K (CK), a metabolite produced by the hydrolysis of ginsenoside Rb1, possesses strong anti-inflammatory effects. However, whether or not CK protects ox-LDL-damaged endothelial cells and the potential mechanisms have not been elucidated. Methods: In our study, cell viability was tested using a 3-(4, 5-dimethylthiazol-2yl-)-2,5-diphenyl tetrazolium bromide (MTT) assay. Expression levels of interleukin-6, monocyte chemoattractant protein-1, tumor necrosis factor-${\alpha}$, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 were determined by enzyme-linked immunosorbent assay and Western blotting. Mitochondrial membrane potential (${\Delta}{\Psi}m$) was detected using JC-1. The cell apoptotic percentage was measured by the Annexin V/ propidium iodide (PI) assay, lactate dehydrogenase, and caspase-3 expression. Apoptosis-related proteins, nuclear factor $(NF)-{\kappa}B$, and mitogen-activated protein kinases (MAPK) signaling pathways protein expression were quantified by Western blotting. Results: Our results demonstrated that CK could ameliorate ox-LDL-induced human umbilical vein endothelial cells (HUVECs) inflammation and apoptosis, $NF-{\kappa}B$ nuclear translocation, and the phosphorylation of p38 and c-Jun N-terminal kinase (JNK). Moreover, anisomycin, an activator of p38 and JNK, significantly abolished the anti-apoptotic effects of CK. Conclusion: These results demonstrate that CK prevents ox-LDL-induced HUVECs inflammation and apoptosis through inhibiting the $NF-{\kappa}B$, p38, and JNK MAPK signaling pathways. Thus, CK is a candidate drug for atherosclerosis treatment.

A5E promotes Cell growth Arrest and Apoptosis in Non Small Cell Lung Cancer

  • Bak, Ye Sol;Ham, Sun Young;O, Baatartsogt;Jung, Seung Hyun;Choi, Kang Duk;Han, Tae Young;Han, Il Young;Yoon, Do-Young
    • Journal of Applied Biological Chemistry
    • /
    • 제57권2호
    • /
    • pp.113-122
    • /
    • 2014
  • A5E is complex of several medicinal herb ethanol extracts. The aim of this study is investigating the anticancer effect for non-small cell lung cancer. The antitumor effects of A5E on NCI-H460 were examined by regulation of cell proliferation, apoptosis, cell cycle arrest, mitochondrial membrane potential (${\Delta}{\Psi}_m$), and apoptosis-related protein. Cell proliferation was measured by MTS assay. Apoptosis induced by A5E was confirmed by Annexin V-fluorescein isothiocyanate (FITC)/Propidium Iodide (PI) staining, and cell cycle arrest was measured by PI staining. NF-${\kappa}B$ translocation was detected by immunofluorescence and MMP (${\Delta}{\Psi}_m$) was measured by JC-1 staining. The expression of extrinsic pathway molecules such as FasL and FADD were elevated, and procaspase-8 was processed by A5E. In addition, intrinsic pathway related molecules were altered. The Bcl-2 and Bcl-xl levels decreased, Bax increased, and cytochrome C was released. In addition, the mitochondrial membrane potential collapsed, and caspase-3 and poly-(ADP-ribose) polymerase were processed by A5E. Moreover, A5E affected the cellular survival pathway involving phosphatidylinositol 3-kinase (PI3K)/Akt and NF-${\kappa}B$. PI3K and Akt were downregulated, also NF-${\kappa}B$ expression was decreased, and nuclear translocalization was inhibited by A5E. These results suggested that A5E delays proliferation, inhibit cell cycle progression and induce apoptosis in human lung cancer cell. We conclude that A5E is a potential anticancer agent for human lung carcinoma.

방사선조사후 백서소장점막에서 발생하는 신호전달체계에 관한 연구 (The Signal Transduction Mechanisms on the Intestinal Mucosa of Rat Following Irradiation)

  • 유정현;김성숙;이경자;이정식
    • Radiation Oncology Journal
    • /
    • 제15권2호
    • /
    • pp.79-95
    • /
    • 1997
  • 목적 : 최근 신호전달체계에서 중요한 효소로 알려진 phosphollpase C(PLC) 동위효소들의 발현이 조직의 종류와 발달과정에 따라 특이한 양상을 보이고 $PLC-{\gamma}1$은 세포의 성장, 분화 및 증식에 중추적 역할을 하는 것으로 알려져 있다 방사선 조사 후 세포내 신호전달에 관한 연구도 최근 활발하여 소장 점막의 재생에 $PLC-{\gamma}$ 및 ras 암 유전자단백이 관여하고, 조직 손상에 protein kinase C(PKC)가 관여하는 등 연구들이 보고되었으나 이들의 연구가 단편적이며 아직 확실히 밝혀진 바가 없다. 본 연구는 백서의 소장에 방사선을 조사하여 PLC 동위효소, epidermal growth factor receptor(EGFR), ras 암유전자단백, 및 PKC와 같이 신호전달체계에 관여하는 물질들의 발현을 시간적으로 관찰하여 방사선에 의한 소장 조직의 손상 및 재생 기전을 밝히고자 하였다. 대상 및 방벌 실험동물로 암.수 구별없이 생후 4-5개월, 체중 250-3009의 백서(Spraque-Dawley) 60마리를 대상으로 하여 실험군으로 전신에 8Gy의 방사선을 조사하고 방사선 조사 후 1일, 3일, 5일, 7일,14일에 각각 10마리씩 희생시켜 소장을 적출하여 사용하였고, 정상대조군은 각 시기별로 2마리씩 사용하였다. 적출된 소장의 반은 즉시 얼려 PLC의 면역블로팅 및 phosphoinositide(PI) 가수분해 활성도 측정에 사용하였고, 나머지 반은 포르말린에 고정한 다음 파라핀에 포매하여 조직병리검색과 면역조직화학염색에 사용하였다. EGFH, ras 암유전자단백, PLC, PKC의 발현은 면역조직화학염색법으로 관찰하였다. 점막세포의 재생여부는 광학현미경상의 유사분열 수와 proliferating ceil nuclear antigen(PCNA) kit를 이용한 증식세포핵 수로 확인하였다. PLC는 $PLC-{\beta},\;-{\gamma},\;-{\delta}$ 발현을 모두 검색하였고, 각각 면역블로팅과 Pl 가수분해 활성도 측정으로 확인하였다. 결과 : 1) 조직병리학 소견상 방사선 조사에 의한 소장의 조직손상은 1일부터 관찰되어 3일까지 심하였고 재생은 3일과 5일에 현저하였다. 2) 면역조직화학염색 결과 $PLC-{\gamma}1$의 발현은 재생을 보이는 3일과 5일에 발현되었으며 5일째의 점막에서 가장 강하게 나타났다. $PLC-{\delta}1$은 방사선 조사 후 손상을 보이는 1일과 3일의 점막에서 강한 발현을 나타내었다. $PLC-{\beta}1$은 모든 실험군에서 발현되지 않았다. 면역블로팅 결과도 면역조직화학염색과 일치하는 결과를 보였다. 3) $PLC-{\gamma}1$의 활성도를 보기 위한 PI 가수분해 활성도 측정결과는 3일과 5일에 현저히 높은 수치를 보여 방사선 조사후 소장점막의 재생과정의 중요한 신호전달과정이 PLC-1이 관여하는 PI 가수분해에 의해 이뤄짐을 알 수 있었다. 4) ras 암유전자단백의 발현온 재생이 시작되는 3일부터 나타나 7일까지 지속되었고, EGFR 도 재생시기인 3일과 5일에 가장 강하게 나타났고 그 후 점차 감소하는 추세를 보였다. 한편 PKC는 발현이 미약했으나 증식지수가 높은 점막에 3일과 5일에 발현이 관찰되었다. 결론 : 방사선조사에 의한 소장점막조직의 손상 및 재생과정의 신호전달기전에 PLC의 신호전달체계에 관여하는 효소가 중요한 역할을 하며 특히 $PLC-{\gamma}1$과 ras암유전자단백, EGFR, PKC는 방사선조사 후 공장점막세포의 재생기전에 주로 발현되어 재생과정과 관련된 신호전달기전에 관여함을 나타내었다. $PLC-{\delta}$은 방사선 조사 후 세포의 손상시기에 강한 발현을 보여 특히 손상과정과 관련된 신호전달기전에 관여함을 추측할 수 있었다. $PLC-{\beta}1$의 발현은 모든 실험군에서 음성인 소견을 보여 방사선조사 후 소장점막의 세포손상 및 재생과정에서 $PLC-{\beta}1$과 관련된 신호전달체계는 관여하지 않음을 알 수 었었다. 그러나, 이러한 신호전달체계의 기전을 구체적으로 밝히기 위해서는 추후 지속적인 연구가 필요하다고 사료된다.

  • PDF

모단피의 PC12 cell 산화억제 효과 및 neuronal 유전자 발현 profile 분석에 대한 연구 (Effect of Moutan Cortex Radicis on gene expression profile of differentiated PC12 rat cells oxidative-stressed with hydrogen peroxide)

  • 김현희;노삼웅;나영인;배현수;신민규;김정숙;홍무창
    • 동의생리병리학회지
    • /
    • 제17권2호
    • /
    • pp.529-541
    • /
    • 2003
  • Yukmijihwang-tang has been widely used as an and-aging herbal medicine for hundred years in Asian countries. Numerous studies show that Yukmijihwangtang has anti-oxidative effect both in vivo and in vitro. It has been reported that Moutan Cortex Radicis extract (MCR) was the most effective herb in Yukmijihwang-tang on undifferentiated PC12 cells upon oxidative-stressed with hydrogen peroxide. The purpose of this study is to; 1) evaluate the recovery of neuronal damage by assessing the anti-oxidant effect of MCR on PC12 cells differentiated with nerve growth factor (NGF), 2) identify candidate genes responsible for anti-oxidative effect on differentiated PC12 cells by oligonucleotide chip microarray. PC12 cells, which were differentiated by treating with NGF, were treated without or with hydrogen peroxide in the presence or absence of various concentration of MCR. Cell survival was determined by using MTS assay. Measurement of intracellular reactive oxygen species (ROS) generation was determined using the H2DCFDA assay The viability of cells treated with MCR was significantly recovered from stressed PC12 cell. In addition, wide rage of concentrations of MCR shows dose-dependent inhibitory effect on ROS production in oxidative-stressed cells. Total RNAs of cells without treatment(Control group), only treated with H₂O₂ (stressed group) and treated with both H₂O₂ and of MCR (MCR group) were isolated, and cDNAs was synthesized using oligoT7(dT) primer. The fragmented cRNAs, synthesized from cDNAs, were applied to Affymetrix GeneChip Rat Neurobiology U34 Array. mRNA of Calcium/calmodulin-dependent protein kinase II delta subunit(CaMKII), neuron glucose transporter (GLUT3) and myelin/oligodendrocyte glycoprotein(MOG) were downregulated in Stressed group comparing to Control group. P2X2-5 receptor (P2X2R-5), P2X2-4 receptor (P2X2R-4), c-fos, 25 kDa synaptosomal attachment protein(SNAP-25a) and GLUT3 were downregulated, whereas A2 adenosine receptor (A2AR), cathechol-O-methyltransferase(COMT), glucose transporter 1 (GLUT1), EST223333, heme oxygenase (HO), VGF, UI-R-CO-ja-a-07-0-Ul.s1 and macrophage migration inhibitory factor (MIF) were upregulated in MCA group comparing to Control group. Expression of Putative potassium channel subunit protein (ACK4), P2X2A-5, P2X2A-4, Interferon-gamma inducing factor isoform alpha precursor (IL-18α), EST199031, P2XR, P2X2 purinoceptor isoform e (P2X2R-e), Precursor interleukin 18 (IL-18) were downregulated, whereas MOO, EST223333, GLUT-1, MIF, Neuronatin alpha, UI-R-C0-ja-a-07-0-Ul.s1, A2. adenosine receptor, COMT, neuron-specific enolase (NSE), HO, VGF, A rat novel protein which is expressed with nerve injury (E12625) were upregulated in MCR group comparing to Stressed group. The results suggest that decreased viability and AOS production of PC12 cell by H₂O₂ may be, at lease, mediated by impaired glucose transporter expression. It is implicated that the MCR treatment protect PC12 cell from oxidative stress via following mechanisms; improving glucose transport into the cell, enhancing expression of anti-oxidative genes and protecting from dopamine cytotoxicity by increment of COMT and MIF expression. The list of differentially expressed genes may implicate further insight on the action and mechanism behind the anti-oxidative effects of herbal extract Moutan Cortex Radicis.

Development of screening systems for modulators on phospholipase-mediated signal transduction

  • Lee, Young-Han-;Min, Do-Sik;Kim, Jae-Ho-;Suh, Pann-Ghill;Ryu, Sung-Ho
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1994년도 춘계학술대회 and 제3회 신약개발 연구발표회
    • /
    • pp.186-186
    • /
    • 1994
  • Many agonists have been known to activate the hydrolysis of membrane phospholipids through the bindings with corresponding receptors on the various cells. Diacylglycerol and inositol 1,4,5-trisphosphate(IP3) generated by the action of phosphoinositide-specific phospholipase C (PI-PLC) are well known second messengers for the activation of protein kinase C and the mobilization of Ca2+ in many cells. Three types of PI-PLC isozyme (${\alpha}$,${\gamma}$, and $\delta$) and several subtrpes for each type have been identified from mammalian sources by purification of enzymes and cloning of their cDNAs. Each type PI-PLC isozyme is coupled to different receptors and mediators, for example, ${\beta}$-types are coupled to the seven-transmembrane-receptors via Gq family of G-proteins and ${\beta}$-types directly to the receptor tyrosine kinases. Specific modulators for the signaling pathway through each type of PI-PLC should be very useful as potential potential candidates for lend substances in developing novel drugs. To establish the sensitive and convenient screening systems for searching modulators on PI-PLC mediated signaling, two kinds of approaches have been tried. (1) Establishment of in vitro assay condition for each type of PI-PLC isozyme: Overexpression by using vaccinia virus and purification of each isozyme was carried out for the preparation of large amounts of enaymes. Optimum and sensitive assay condition for the measurements of PI-ELC activities were established. (2) Development of the cell lines in which each type of PI-PLC is permanently overexpressed: A fibroblast cell line (3T3${\gamma}$1-7) in which PI-PLC-${\gamma}$1 was overexpressed by using pZip-neo expression vector was developed and used for the measurement of PDGF-induced IP3 formation. The responses for IP3 formed in 3T3${\gamma}$1-7 cells by the treatment of PDGF is 8 times more sensitive than those in control cells. 3T3${\gamma}$l-7 cell is useful for the screening of the inhibitors on the PDGF-induced cellular responses from large number of samples in a small volume(50 ${\mu}$l) and short time(5-15 min). Using these systems, we screened hundreds of herb-extracts for the inhibition of PDGF-induced IP3 formation and selected several extracts that showed the inhibition as the candidates for isolation and characterization of active substances. The determination of the acting point of selected extracts or fractions in the PDGF signaling pathway has been analyzing.

  • PDF

Sesquiterpenoids Bioconversion Analysis by Wood Rot Fungi

  • Lee, Su-Yeon;Ryu, Sun-Hwa;Choi, In-Gyu;Kim, Myungkil
    • 한국균학회소식:학술대회논문집
    • /
    • 한국균학회 2016년도 춘계학술대회 및 임시총회
    • /
    • pp.19-20
    • /
    • 2016
  • Sesquiterpenoids are defined as $C_{15}$ compounds derived from farnesyl pyrophosphate (FPP), and their complex structures are found in the tissue of many diverse plants (Degenhardt et al. 2009). FPP's long chain length and additional double bond enables its conversion to a huge range of mono-, di-, and tri-cyclic structures. A number of cyclic sesquiterpenes with alcohol, aldehyde, and ketone derivatives have key biological and medicinal properties (Fraga 1999). Fungi, such as the wood-rotting Polyporus brumalis, are excellent sources of pharmaceutically interesting natural products such as sesquiterpenoids. In this study, we investigated the biosynthesis of P. brumalis sesquiterpenoids on modified medium. Fungal suspensions of 11 white rot species were inoculated in modified medium containing $C_6H_{12}O_6$, $C_4H_{12}N_2O_6$, $KH_2PO_4$, $MgSO_4$, and $CaCl_2$ for 20 days. Cultivation was stopped by solvent extraction via separation of the mycelium. The metabolites were identified as follows: propionic acid (1), mevalonic acid lactone (2), ${\beta}$-eudesmane (3), and ${\beta}$-eudesmol (4), respectively (Figure 1). The main peaks of ${\beta}$-eudesmane and ${\beta}$-eudesmol, which were indicative of sesquiterpene structures, were consistently detected for 5, 7, 12, and 15 days These results demonstrated the existence of terpene metabolism in the mycelium of P. brumalis. Polyporus spp. are known to generate flavor components such as methyl 2,4-dihydroxy-3,6-dimethyl benzoate; 2-hydroxy-4-methoxy-6-methyl benzoic acid; 3-hydroxy-5-methyl phenol; and 3-methoxy-2,5-dimethyl phenol in submerged cultures (Hoffmann and Esser 1978). Drimanes of sesquiterpenes were reported as metabolites from P. arcularius and shown to exhibit antimicrobial activity against Gram-positive bacteria such as Staphylococcus aureus (Fleck et al. 1996). The main metabolites of P. brumalis, ${\beta}$-Eudesmol and ${\beta}$-eudesmane, were categorized as eudesmane-type sesquiterpene structures. The eudesmane skeleton could be biosynthesized from FPP-derived IPP, and approximately 1,000 structures have been identified in plants as essential oils. The biosynthesis of eudesmol from P. brumalis may thus be an important tool for the production of useful natural compounds as presumed from its identified potent bioactivity in plants. Essential oils comprising eudesmane-type sesquiterpenoids have been previously and extensively researched (Wu et al. 2006). ${\beta}$-Eudesmol is a well-known and important eudesmane alcohol with an anticholinergic effect in the vascular endothelium (Tsuneki et al. 2005). Additionally, recent studies demonstrated that ${\beta}$-eudesmol acts as a channel blocker for nicotinic acetylcholine receptors at the neuromuscular junction, and it can inhibit angiogenesis in vitro and in vivo by blocking the mitogen-activated protein kinase (MAPK) signaling pathway (Seo et al. 2011). Variation of nutrients was conducted to determine an optimum condition for the biosynthesis of sesquiterpenes by P. brumalis. Genes encoding terpene synthases, which are crucial to the terpene synthesis pathway, generally respond to environmental factors such as pH, temperature, and available nutrients (Hoffmeister and Keller 2007, Yu and Keller 2005). Calvo et al. described the effect of major nutrients, carbon and nitrogen, on the synthesis of secondary metabolites (Calvo et al. 2002). P. brumalis did not prefer to synthesize sesquiterpenes under all growth conditions. Results of differences in metabolites observed in P. brumalis grown in PDB and modified medium highlighted the potential effect inorganic sources such as $C_4H_{12}N_2O_6$, $KH_2PO_4$, $MgSO_4$, and $CaCl_2$ on sesquiterpene synthesis. ${\beta}$-eudesmol was apparent during cultivation except for when P. brumalis was grown on $MgSO_4$-free medium. These results demonstrated that $MgSO_4$ can specifically control the biosynthesis of ${\beta}$-eudesmol. Magnesium has been reported as a cofactor that binds to sesquiterpene synthase (Agger et al. 2008). Specifically, the $Mg^{2+}$ ions bind to two conserved metal-binding motifs. These metal ions complex to the substrate pyrophosphate, thereby promoting the ionization of the leaving groups of FPP and resulting in the generation of a highly reactive allylic cation. Effect of magnesium source on the sesquiterpene biosynthesis was also identified via analysis of the concentration of total carbohydrates. Our current study offered further insight that fungal sesquiterpene biosynthesis can be controlled by nutrients. To profile the metabolites of P. brumalis, the cultures were extracted based on the growth curve. Despite metabolites produced during mycelia growth, there was difficulty in detecting significant changes in metabolite production, especially those at low concentrations. These compounds may be of interest in understanding their synthetic mechanisms in P. brumalis. The synthesis of terpene compounds began during the growth phase at day 9. Sesquiterpene synthesis occurred after growth was complete. At day 9, drimenol, farnesol, and mevalonic lactone (or mevalonic acid lactone) were identified. Mevalonic acid lactone is the precursor of the mevalonic pathway, and particularly, it is a precursor for a number of biologically important lipids, including cholesterol hormones (Buckley et al. 2002). Farnesol is the precursor of sesquiterpenoids. Drimenol compounds, bi-cyclic-sesquiterpene alcohols, can be synthesized from trans-trans farnesol via cyclization and rearrangement (Polovinka et al. 1994). They have also been identified in the basidiomycota Lentinus lepideus as secondary metabolites. After 12 days in the growth phase, ${\beta}$-elemene caryophyllene, ${\delta}$-cadiene, and eudesmane were detected with ${\beta}$-eudesmol. The data showed the synthesis of sesquiterpene hydrocarbons with bi-cyclic structures. These compounds can be synthesized from FPP by cyclization. Cyclic terpenoids are synthesized through the formation of a carbon skeleton from linear precursors by terpene cyclase, which is followed by chemical modification by oxidation, reduction, methylation, etc. Sesquiterpene cyclase is a key branch-point enzyme that catalyzes the complex intermolecular cyclization of the linear prenyl diphosphate into cyclic hydrocarbons (Toyomasu et al. 2007). After 20 days in stationary phase, the oxygenated structures eudesmol, elemol, and caryophyllene oxide were detected. Thus, after growth, sesquiterpenes were identified. Per these results, we showed that terpene metabolism in wood-rotting fungi occurs in the stationary phase. We also showed that such metabolism can be controlled by magnesium supplementation in the growth medium. In conclusion, we identified P. brumalis as a wood-rotting fungus that can produce sesquiterpenes. To mechanistically understand eudesmane-type sesquiterpene biosynthesis in P. brumalis, further research into the genes regulating the dynamics of such biosynthesis is warranted.

  • PDF