• Title/Summary/Keyword: Protein dephosphorylation

Search Result 75, Processing Time 0.021 seconds

Bovine Growth Hormone and Milk Fat Synthesis: from the Body to the Molecule - Review -

  • Kim, W.Y.;Ha, J.K.;Han, In K.;Baldwin, R.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.10 no.4
    • /
    • pp.335-356
    • /
    • 1997
  • Injection of bovine growth hormone (bGH) to lactating dairy cows increases milk yield and yields of milk components including fat. It is generally believed that most of the anabolic effects derived from bGH in animal tissues are primarily mediated by IGF-1. IGF-1 is a strong anabolic peptide in the plasma of animals and exerts mitogenic and metabolic effects on target cells. Contrary to most protein hormones, the majority of IGF-1 in circulation is bound to the binding proteins (IGFBPs) which are known to be responsible for modifying the biological actions of IGF-1, thus making determinations of IGF-1 actions more difficult. On the other hand, fat is a major milk component and the greatest energy source in milk. Currently, the fat content of milk is one of the major criteria used in determining milk prices. It has been known that flavor and texture of dairy products are mainly affected by milk fat and its composition. Acetyl-CoA carboxylase (ACC) is the rate limiting enzyme which catalyzes the conversion of acetyl-CoA to malonyl-CoA for fatty acid synthesis in 1ipogenic tissues of animals including bovine lactating mammary glands. In addition to the short-tenn hormonal regulation of ACC by changes in the catalytic efficiency per enzyme molecule brought about by phosphorylation and dephosphorylation of the enzyme, the long-term hormonal regulation of ACC by changes in the number of enzyme molecules plays an essential role in control of ACC and lipogenesis. Insulin, at supraphysiological concentrations, binds to IGF-1 receptors, thereby mimicking the biological effects of IGF-1. The receptors for insulin and IGF-1 share structural and functional homology. Furthermore, epidermal growth factor increased ACC activity in rat hepatocytes and adipocytes. Therefore, it can be assumed that IGF-1 mediating bGH action may increase milk fat production by stimulation ACC with phosphorylation (short term) and/or increasing amounts of the enzyme proteins (long term). Consequently, the main purpose of this paper is to give the readers not only the galactopoietic effects of bGH, but also the insight of bGH action with regard to stimulating milk fat synthesis from the whole body to the molecular levels.

The Stimulatory Effect of Essential Fatty Acids on Glucose Uptake Involves Both Akt and AMPK Activation in C2C12 Skeletal Muscle Cells

  • Park, So Yeon;Kim, Min Hye;Ahn, Joung Hoon;Lee, Su Jin;Lee, Jong Ho;Eum, Won Sik;Choi, Soo Young;Kwon, Hyeok Yil
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.3
    • /
    • pp.255-261
    • /
    • 2014
  • Essential fatty acid (EFA) is known to be required for the body to function normally and healthily. However, the effect of EFA on glucose uptake in skeletal muscle has not yet been fully investigated. In this study, we examined the effect of two EFAs, linoleic acid (LA) and ${\alpha}$-linolenic acid (ALA), on glucose uptake of C2C12 skeletal muscle cells and investigated the mechanism underlying the stimulatory effect of polyunsaturated EFAs in comparison with monounsaturated oleic acid (OA). In palmitic acid (PA)-induced insulin resistant cells, the co-treatment of EFAs and OA with PA almost restored the PA-induced decrease in the basal and insulin-stimulated 2-NBDG (fluorescent D-glucose analogue) uptake, respectively. Two EFAs and OA significantly protected PA-induced suppression of insulin signaling, respectively, which was confirmed by the increased levels of Akt phosphorylation and serine/threonine kinases ($PKC{\theta}$ and JNK) dephosphorylation in the western blot analysis. In PA-untreated, control cells, the treatment of $500{\mu}M$ EFA significantly stimulated 2-NBDG uptake, whereas OA did not. Phosphorylation of AMP-activated protein kinase (AMPK) and one of its downstream molecules, acetyl-CoA carboxylase (ACC) was markedly induced by EFA, but not OA. In addition, EFA-stimulated 2-NBDG uptake was significantly inhibited by the pre-treatment of a specific AMPK inhibitor, adenine 9-${\beta}$-D-arabinofuranoside (araA). These data suggest that the restoration of suppressed insulin signaling at PA-induced insulin resistant condition and AMPK activation are involved at least in the stimulatory effect of EFA on glucose uptake in C2C12 skeletal muscle cells.

Roles of Prostatic Acid Phosphatase in Prostate Cancer (Prostatic acid phosphatase의 전립선 암에서의 역할)

  • Kong, Hoon-Young;Lee, Hak-Jong;Byun, Jong-Hoe
    • Journal of Life Science
    • /
    • v.21 no.6
    • /
    • pp.893-900
    • /
    • 2011
  • Prostatic acid phosphatase (PAP) is one of the widely used biomarkers in the diagnosis of prostate cancer. It was initially identified in 1935 and is the most abundant phosphatase in the human prostate. PAP is a prostate-specific enzyme that is synthesized in prostate epithelial cells. It belongs to the acid phosphatase group that shows enzymatic activity in acidic conditions. PAP is abundant in prostatic fluid and is thought to have a role in fertilization and oligospermia. It also has a potential role in reducing chronic pain. But one of the most apparent functions of PAP is the dephosphorylation of macromolecules such as HER-2 and PI3P that are involved in the ERK1/2 and MAPK pathways, which in turn leads to inhibition of cell growth and tumorigenesis. Currently, clinical trials using PAP DNA vaccine are underway and FDA-approved immunotherapy using PAP is commercially available. Despite these clinically important aspects, molecular mechanisms underlying PAP regulation are not fully understood. The promoter region of PAP was reported to be regulated by NF-${\kappa}B$, TNF-${\alpha}$, IL-1, androgen and androgen receptors. Here, the features of PAP gene and protein structures together with the function, regulation and roles of PAP in prostate cancer are discussed.

Expression and Purification of the Phosphatase-like Domain of a Voltage-Sensing Phosphatase, Ci-VSP (막 전위 감지 탈인산화 효소, Ci-VSP의 유사 탈인산화 효소 도메인의 발현과 정제)

  • Kim, Sung-Jae;Kim, Hae-Min;Choi, Hoon;Kim, Young-Jun
    • Journal of Life Science
    • /
    • v.21 no.7
    • /
    • pp.1032-1038
    • /
    • 2011
  • Recently identified Ciona intestinalis voltage sensor-containing phosphatase (Ci-VSP) consists of an ion channel-like transmembrane domain (VSD) and a phosphatase-like domain. Ci-VSP senses the change of membrane potential by its VSD and works as a phosphoinositide phosphatase by its phosphatase domain. In this study, we present the construction of His-tagged phosphatase-like domain of Ci-VSP, its recombinant expression and purification, and its enzymatic activity behavior in order to examine the biochemical behavior of phosphatase domain of Ci-VSP without interference. We found that Ci-VSP(248-576)-His can be eluted with an elution buffer containing 25 mM NaCl and 100 mM imidazole during His-tag purification. In addition, we found the proper measurement condition for kinetics study of Ci-VSP(248-576)-His against p-nitrophenyl phosphate (pNPP). We measured the kinetic constant of Ci-VSP(248-576)-His at $37^{\circ}C$, pH 5.0 or 5.5, under 30 min of reaction time, and less than $2.0\;{\mu}g$ of protein amount. With these conditions, we acquired that Ci-VSP(248-576)-His has $K_m$ of $354{\pm}0.143\;{\mu}M$, $V_{max}$ of $0.0607{\pm}0.0137\;{\mu}mol$/min/mg and $k_{cat}$ of $0.359{\pm}0.009751\;min^{-1}$ for pNPP dephosphorylation. Therefore, we produced a pure form of Ci-VSP(248-576)-His, and this showed a higher activity against pNPP. This purified protein will provide the road to a structural investigation on an interesting protein, Ci-VSP.

In Vitro Phosphorylation of Nuclear Proteins in Isolated Liver Nuclei from Rats Maintained in a Starvation State, Following Refeeding, and from Diabetic Rats with Insulin Injection (단식(斷食), 재급식(再給食) 및 인슈린 투여(投與) 후(後)에 쥐의 간(肝)으로부터 분리된 세포핵의 핵단백질 인산화)

  • Lee, Hyo-Sa;Gibson, David M.
    • Applied Biological Chemistry
    • /
    • v.23 no.1
    • /
    • pp.23-30
    • /
    • 1980
  • Labelling of chromatin proteins with 32P was observed after incubating isolated liver nuclei with $[{\gamma}-32P]$ ATP for 5 minutes at $37^{\circ}C$. The pattern of labelling with 32P was examined on SDS polyacrylamide gel electrophoresis with nuclei from rats maintained in a starvation state for 48 hours, following refeeding for 12 hours; and from fed streptozotocin-diabetic rats with insulin injection 6 hours before sacrifice. With 48h starved rat liver nuclei the level of phosphorylation for 0.14M NaCl soluble proteins was decreased in the molecular weights between 41,000 and 200,000 daltons relative to normal controls. Refeeding the starved rats reversed the change of phosphorylation pattern over 12 hour The level of phosphorylation for five phenol soluble non-histone proteins with molecular weights above 59,000 daltons was somewhat decreased with 48h starved rat liver nuclei as compared with that of normal controls. Starvation also decreased the phosphorylation level of major histones in relation to normal controls. The experiment with insulin injection into fed streptozotocin-diabetic rats showed the tendency to increase phosphorylation of 0.14M NaCl soluble proteins (130,000 dalton protein) and phenol soluble non-histone proteins (155,000 dalton protein). The phosphorylation level of histones appeared to be invariant under the experimental conditoins employed here. These results suggest the possibility that the phosphorylation and dephosphorylation of 0.14M NaCl soluble proteins and $H_1$ histone precede those of other chromatin associated nuclear proteins, It is of interest to find that insulin signal was correlated to phosphorylation of nuclear proteins while glucagon signet dephosphorylated nuclear proteins.

  • PDF