• 제목/요약/키워드: Protein denaturation

검색결과 166건 처리시간 0.029초

Fluorescence Quenching of Green Fluorescent Protein during Denaturation by Guanidine

  • Jung, Ki-Chul;Park, Jae-Bok;Maeng, Pil-Jae;Kim, Hack-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권3호
    • /
    • pp.413-417
    • /
    • 2005
  • Fluorescence of green fluorescent protein mutant, 2-5 GFP is observed during denaturation by guanidine. The fluorescence intensity decreases exponentially but the fluorescence lifetime does not change during denaturation. The fluorescence lifetime of the denatured protein is shorter than that of native form. As the protein structure is modified by guanidine, solvent water molecules penetrate into the protein barrel and protonate the chromophore to quench fluorescence. Most fluorescence quenchers do not affect the fluorescence of native form but accelerate the fluorescence intensity decay during denaturation. Based on the observations, a simple model is suggested for the structural change of the protein molecule during denaturation.

Experimental and Modelling Study of the Denaturation of Milk Protein by Heat Treatment

  • Qian, Fang;Sun, Jiayue;Cao, Di;Tuo, Yanfeng;Jiang, Shujuan;Mu, Guangqing
    • 한국축산식품학회지
    • /
    • 제37권1호
    • /
    • pp.44-51
    • /
    • 2017
  • Heat treatment of milk aims to inhibit the growth of microbes, extend the shelf-life of products and improve the quality of the products. Heat treatment also leads to denaturation of whey protein and the formation of whey protein-casein polymer, which has negative effects on milk product. Hence the milk heat treatment conditions should be controlled in milk processing. In this study, the denaturation degree of whey protein and the combination degree of whey protein and casein when undergoing heat treatment were also determined by using the Native-PAGE and SDS-PAGE analysis. The results showed that the denaturation degree of whey protein and the combination degree of whey protein with casein extended with the increase of the heat-treated temperature and time. The effects of the heat-treated temperature and heat-treated time on the denaturation degree of whey protein and on the combination degree of whey protein and casein were well described using the quadratic regression equation. The analysis strategy used in this study reveals an intuitive and effective measure of the denaturation degree of whey protein, and the changes of milk protein under different heat treatment conditions efficiently and accurately in the dairy industry. It can be of great significance for dairy product proteins following processing treatments applied for dairy product manufacturing.

Effects of Protein Unfolding and Soluble Aggregates Formation on the Gel Strength of Whey Proteins

  • Park, Moon-Jung;Michael E. Mangino
    • Preventive Nutrition and Food Science
    • /
    • 제2권4호
    • /
    • pp.281-284
    • /
    • 1997
  • Heat-induced gelation is an important functional property of whey proteins. Preheating of calcium reduced whey was reported to increase gel strength. 5% whey-protein solutions were preheated at pH7 and at various temperatures(60~8$0^{\circ}C$) for 15 minutes. The amount of soluble aggregates and denaturation enthalpy of preheated whey proteins were measured. Preheating temperature was negatively correlated with denaturation enthalpy($R^2$=0.857, P=0.08) and positive with the amount of soluble aggregates($R^2$=0.921, P=0.002). Denaturation enthalpy was negatively correlated with gel strength($R^2$=0.93, P=0.002). Soluble aggregates and gel strength were positively correlated($R^2$=0.972, P=0.0003). The formation of three dimensional gel network requires controlled protein denaturation and aggregation. Since preheating leads to the partial denaturation of proteins and the formation of soluble aggregates, preheated whey proteins have a higher gel strength than non-preheated one.

  • PDF

시유의 질소분획물 함량과 유청단백질 변성정도 (Contents of Nitrogen Fractions and the Degree of Whey Protein Denaturation in Market Milks)

  • 박영희;홍윤호
    • 한국식품영양과학회지
    • /
    • 제22권2호
    • /
    • pp.161-164
    • /
    • 1993
  • 본 연구에서는 Kjeldahl 방법으로 시유의 질소분획물의 함량과 유청단백질 변성정도를 측정함으로써 이들이 시유의 열처리 정도를 비교할 수 있는 검색의 지표로서 타당하는지 알아보았다. 각 열처리법에 따른 질소분획물들의 함량을 보면, 원유에서는 시료 100g당 총질소가 431.3mg, 케이신질소가 341.0mg, 비케이신질소가 90.3mg, 이 중에서 비단백태질소가 31.6mg그리고 유청단백질소는 58.8mg을 보인 반면, 시유인 저온살균유, 고온순간살균유, 초고온처 리유의 질소분획물들의 함량이 다르게 나타났다. 유청단백질 변성정도는 저온살균유가 26.7%, 고온순간살균유가 32.9%, 초고온살균유가 60.7%, 그리고 초고온멸균유가 38.4%를 보여 열처리 정도가 높아질수록 변성정도도 높게 나타남으로써 열처리법에 따라 유청단백질의 변성정도의 구분이 뚜렷하였다.

  • PDF

Effects of Hydrostatic Pressure on Myofibrillar Protein Extracted from Bovine Semitendinosus

  • Lee, Eun-Jung;Kim, Yun-Ji;Lee, Nam-Hyouck;Yamamoto, Katsuhiro
    • 한국축산식품학회:학술대회논문집
    • /
    • 한국축산식품학회 2004년도 정기총회 및 제33차 춘계 학술대회
    • /
    • pp.198-201
    • /
    • 2004
  • To investigate hydrostatic pressure (HP) effect on myofibrillar protein (Mf) extracted from bovine Semitendinosus muscle, Ca- and Mg-ATPase activities to evaluate denaturation of myosin and actin, and soluble protein contents were observed. In Mf treated with 100 MPa for 5 min was not observed denaturation of myosin and actin. In Mf treated with 200 MPa for 5 min, denaturation of myosin and actin were observed but inactivation rate was low (0.0136 $min^{-1}$). Inactivation rate of myosin and actin was dramatically increased above 300 MPa treatment. However denaturation of myosin and actin was not that critical with duration time. By increasing pressure size, the amount of myosin and actin in soluble protein eluted in 20 mM potassium phosphate buffer (pH 7.0) containing 0.6 M NaCl were decreased. SDS-PAGE of soluble protein released from Mf suspension in 0.1 M NaCl buffer (pH 7.0) showed that low molecular weight proteins (15${\sim}$36 KDa) were released by HP treatment above 200 MPa. From the results, denaturation of myosin and actin, and release of light molecule proteins of Mf were observed by HP treatment over 200 MPa.

  • PDF

폴리락티드-글리콜리드 마이크로스피어에 봉입된 단백질의 항원성 평가 (Antigenicity of Protein Entrapped in Poly(lactide-co-glycolide) Microspheres)

  • 송세현;조성완;신택환;윤미경;최영욱
    • Journal of Pharmaceutical Investigation
    • /
    • 제31권3호
    • /
    • pp.191-196
    • /
    • 2001
  • Biodegradable polymeric microspheres were studied for their usefulness as carriers for the delivery of vaccine antigens. However, protein antigen could be denatured during microencapsulation processes due to the exposure to the organic phase and stress condition of cavitation and shear force. Therefore this study was carried out to re-evaluate the degree of protein denaturation during microencapsulation with poly(lactide-co-glycolide) (PLGA) copolymer. PLGA microspheres containing ovalbumin (OVA), prepared by W/O/W multiple emulsification method, were suspended in pH 7.4 PBS and incubated with shaking at $37.5^{\circ}C$. Drug released medium was collected periodically and analyzed for protein contents by micro-BCA protein assay. In order to evaluate the protein integrity, release medium was subjected to the analyses of SDS-PAGE and size exclusion chromatography (SEC). And enzyme-linked immunosorbent assay (ELISA) was introduced to measure the immunoreactivity of entrapped OVA and to get an insight into the three-dimensional structure of epitope. The structures of entrapped protein were not affected significantly by the results of SDS-PAGE and SEC. However, immunoreactivity of released antigen was varied, revealing the possibility of protein denaturation in some microspheres when it was evaluate by ELISA method. Therefore, in order to express the degree of protein denaturation, antigenicity ratio (AR) was obtained as follows: amount of immunoreactivity of OVA/total amount of OVA released ${\times}100(%)$. ELISA method was an efficient tool to detect a protein denaturation during microencapsulation and the comparison of AR values resulted in more accurate evaluation for immunoreactivity of entrapped protein.

  • PDF

산란 노계육에서 추출한 염용성 단백질의 열변성에 관한 연구 (Heat-Induced Denaturation of Salt Soluble Protein Extracted from Spent Layer Meat)

  • 이성기;장호선;김희주
    • 한국축산식품학회지
    • /
    • 제18권3호
    • /
    • pp.209-215
    • /
    • 1998
  • Effects of protein concentration, ionic strength, pH, and temperature range on the heat-induced denaturation of salt soluble protein extracted from spent layer meat were investigated. Viscosity of salt soluble protein heated at 65$^{\circ}C$ for 30 min began to increase sharply above 7 mg/ml of breast protein concentration, and above 21 mg/ml of leg protein concentration, respectively. Both turbidity and viscosity showed the highest value in cooked protein solution with pH 6.0 and 1% NaCl. The turbidity of salt soluble protein started to increase continuously from 40$^{\circ}C$ to 80$^{\circ}C$. The viscosity increased rapidly from 45$^{\circ}C$ to 60$^{\circ}C$ in breast protein, and increased from 50$^{\circ}C$ to 55$^{\circ}C$ in leg protein, respectively, and then kept relatively constant. Breast protein had higher viscosity than leg protein during heat-induced gelation. Therefore, salt soluble protein from spent layer meat was associated with denatured protein (turbidity change) prior to gelation (viscosity change) during heating. Breast protein showed lower thermal transition temperature, and better gel formation than leg protein during heating.

  • PDF

가열 변성에 따른 방어 Myosin과 갈색띠 매물고둥 Paramyosin의 소수성, 용해도, SH기 및 단백질간 상호작용의 변화 (Changes of Hydrophobicity, Solubility, SH Group and Protein-Protein Interaction in Yellowtail Myosin and Whelk Paramyosin During Thermal Denaturation)

  • 최영준;변재형
    • 한국식품과학회지
    • /
    • 제19권2호
    • /
    • pp.89-96
    • /
    • 1987
  • 방어와 갈색띠 매물고둥에서 myosin과 paramyosin 을 추출하고, 이들 단백질의 가열중에 일어나는 변성기구를 아미노산 잔기와 SH기의 변화 및 단백질간의 상호작용 등을 측정하므로서 분석하였다. 각 단백질을 이루는 구성아미노산의 측쇄중 소수성 잔기의 유리정도는 가열온도 $65^{\circ}C$까지는 증가하였으나, 그 이상의 가열온도에서는 감소하는 경향을 보였다. 유리 소수성 잔기가 증가하여 감에 따라, 단백질간 상호작용도 활발하여 갔으며, 소수성 잔기의 유리정도가 감소하는 가열온도$65^{\circ}C$부터는 단백질의 응집이 일어나기 시작 하였다. 단백질간의 상호작용을 탁도로써 분석하여 Arrhenius식으로 해석한 결과, 방어 myosin은 3단계이상의 변성과정으로 구분할 수 있었으며, 갈색띠 매물고둥 paramyos은 2단계의 변성과정으로 구분할 수 있었다. 이들 두 단백질 소수성, 용해도, 유리 SH기의 수 및 단백질간의 상호작용 등은 온도함수와 밀접한 상관관계를 보였다.

  • PDF

콩우유와 우유 혼합유의 단백질 안정성에 미치는 영향인자 (Factors Affecting on Protein Stability of Mixed Cow and Soy Milk)

  • 정남용;김우정
    • 한국식품영양학회지
    • /
    • 제7권4호
    • /
    • pp.345-352
    • /
    • 1994
  • High protein beverage of cow-soy milk was prepared by mixing the soymilk and commercial homogenized cow milk in the various ratios. Effect of heat treatment, pH and addition of calcium and sucrose was studied on the water-soluble nitrogen of cow-soy milk The heat-treated soymilk at 10$0^{\circ}C$ were centrifuged at the range of 830~29,900xg for 30 min and 11,200xg was found to be proper for determination of the degree of protein denaturation by centrifugal method. When soymilk was heated at 70~10$0^{\circ}C$ for 30~240 min, soluble nitrogen (QA SN) in supernatant of protein was decreased to 78.0~56.8% due to protein denaturation. Most of heat denaturation of protein was found to be occurred during Initial heating 10$0^{\circ}C$ for all mixed cow-soy milk. The sedimentation of SN was maximum at pH 4.0 In the range of pH 3~8. Addition of sucrose affected little on oASN while calcium addition reduced %SN significantly to approx. 55% for soymilk(100%). The effect of Ca was less as the ratio of cow milk increased.

  • PDF

Inhibition of Heat-induced Denaturation of Albumin by Nonsteroidal Antiinflammatory Drugs (NSAIDs): Pharmacological Implications

  • Luciano-Saso;Giovanni-Valentini;Casini, Maria-Luisa;Eleonora-Grippa;Gatto, Maria-Teresa;Leone, Maria-Grazia;Bruno-Silvestrini
    • Archives of Pharmacal Research
    • /
    • 제24권2호
    • /
    • pp.150-158
    • /
    • 2001
  • The activity of nonsteroidal antiinflammatory drugs (NSAIDs) in rheumatoid arthritis is not only due to the inhibition of the production of prostaglandins, which can even have beneficial immunosuppressive effects in chronic inflammatory processes. Since we speculated that these drugs could also act by protecting endogenous proteins against denaturation, we evaluated their effect on heat-induced denaturation human serum albumin (HSA) in comparison with several fatty acids which are known to be potent stabilizers of this protein. By the Mizushimas assay and a recently developed HPLC assays we observed that NSAIDs were slightly less active [$EC_{50}~10^{-5}-10^{-4}$ M] than FA and that the HPLC method was less sensitive but more selective than the turbidimetric assay, i.e. it was capable of distinguishing true antiaggregant agents like FA and NSAIDs from substances capable of inhibiting the precipitation of denatured protein aggregates. In conclusion, this survey could be useful for the development of more effective agents in protein condensation diseases like rheumatic disorders, cataract and Alzheimers disease.

  • PDF